cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138552 Returning walks of length 2n on the upper half of the square lattice, distinct under reflections about the y-axis.

This page as a plain text file.
%I A138552 #16 Jul 14 2016 03:21:57
%S A138552 1,2,11,90,889,9723,113322,1380522,17382365,224573349,2962117366,
%T A138552 39741658047,540862505806,7450655906450,103713126384420,
%U A138552 1456845308244810,20627719676855685,294136002612344145
%N A138552 Returning walks of length 2n on the upper half of the square lattice, distinct under reflections about the y-axis.
%C A138552 Under reasonable assumptions, a(n)=E[X^{2n}] where the random variable X is the unitarized Frobenius trace X=a_p/sqrt(p) (as p varies) of a genus 2 curve whose Jacobian is isogenous to the product of two elliptic curves, exactly one of which has complex multiplication.
%H A138552 Kiran S. Kedlaya and Andrew V. Sutherland, <a href="http://arXiv.org/abs/0803.4462">Hyperelliptic curves, L-polynomials and random matrices</a>, arXiv:0803.4462 [math.NT], 2008-2010.
%F A138552 a(n) = (A000891(n) + A000108(n))/2.
%F A138552 G.f.: (3*Pi-2*Pi*sqrt(1-4*x)-2*EllipticE(16*x))/(8*Pi*x). - _Benedict W. J. Irwin_, Jul 13 2016
%F A138552 a(n) ~ 16^n*n^(-2)/Pi. - _Ilya Gutkovskiy_, Jul 13 2016
%F A138552 Recurrence: n*(n+1)^2*(3*n - 2)*a(n) = 2*n*(2*n - 1)*(15*n^2 - n - 4)*a(n-1) - 8*(2*n - 3)*(2*n - 1)^2*(3*n + 1)*a(n-2). - _Vaclav Kotesovec_, Jul 14 2016
%e A138552 a(2) = 11 because EEWW, EWEW, EWWE, EWNS, ENSW, ENWS, NEWS, NESW, NSEW, NSNS, NNSS are all the walks of length 4 on the upper half of the square lattice that are distinct under reflections about the y-axis.
%t A138552 CoefficientList[Series[(3 Pi-2 Pi Sqrt[1-4x]-2EllipticE[16 x])/(8Pi x), {x, 0, 20}], x] (* _Benedict W. J. Irwin_, Jul 13 2016 *)
%Y A138552 Cf. A000108, A000891.
%K A138552 nonn
%O A138552 0,2
%A A138552 _Andrew V. Sutherland_, Mar 24 2008