This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138560 #10 Feb 20 2018 02:44:57 %S A138560 0,1,14,265,6830,230511,9813824,510662531,31637636492,2283908878873, %T A138560 188734671539720,17594292380775969,1828013405513246504, %U A138560 209549687662076216495,26278678714657914834056,3579272018433287670435859,526228717479514441247416016,83065444843454983344683712849 %N A138560 Number of "squashed-tree" graphs with n central nodes, the labeled case, not allowing the direct link between L and R. %C A138560 These are simple connected graphs with n+2 nodes labeled L, R, 1, 2, ..., n. The subgraph on nodes 1..n is a forest (no loops). Nodes L and R are both connected to some subset of 1..n but not to each other. %F A138560 Although we have not written out all the details of the proof, it appears that a(n) ~ 2^n*n^(n-2). %e A138560 a(1) = 1: L--1--R. %e A138560 a(2) = 14: %e A138560 ===== %e A138560 . 1 %e A138560 ./.\ %e A138560 L . R (number = 1) %e A138560 .\./ %e A138560 . 2 %e A138560 ===== %e A138560 . 1 %e A138560 ./.\ %e A138560 L . R (number = 4) %e A138560 .\.. %e A138560 . 2 %e A138560 ===== %e A138560 . 1 %e A138560 ./|\ %e A138560 L | R (number = 1) %e A138560 .\|/ %e A138560 . 2 %e A138560 ===== %e A138560 . 1 %e A138560 ./|\ %e A138560 L | R (number = 4) %e A138560 .\|. %e A138560 . 2 %e A138560 ===== %e A138560 . 1 %e A138560 ./|\ %e A138560 L | R (number = 2) %e A138560 . |. %e A138560 . 2 %e A138560 ===== %e A138560 . 1 %e A138560 . |\ %e A138560 L | R (number = 2) %e A138560 .\|. %e A138560 . 2 %e A138560 ===== %e A138560 Total = 14 %o A138560 (PARI) { a(n) = local(p,q,m); p=partitions(n); sum(j=1,#p, q=p[j]; m=vector(n); for(i=1,#q,m[q[i]]++); n! * prod(i=1,#q,q[i]^(q[i]-2)/q[i]!) / prod(i=1,#m,m[i]!) * (prod(i=1,#q,4^q[i]-1)-2^#q*prod(i=1,#q,2^q[i]-1) ) ) } \\ _Max Alekseyev_, May 10 2009 %Y A138560 Cf. A138562. %K A138560 nonn %O A138560 0,3 %A A138560 _Nadia Heninger_ and _N. J. A. Sloane_, May 10 2008 %E A138560 Edited and extended by _Max Alekseyev_, May 10 2009