This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138572 #16 Feb 05 2024 11:21:29 %S A138572 1,6,122,2126,7910,8254,16201,32312,32426,32998,65436,261649,261803, %T A138572 1044017,1050183,4194999 %N A138572 Numbers k that divide the sum of the digits of k^k in base 2. %C A138572 Conjecture: the sequence is infinite. %C A138572 The quotients are 1, 1, 3, 5, 6, 6, 7, 6, 7, 7, 7, 9, 9, 10, 10, 11. %C A138572 From _Nick Hobson_, Feb 05 2024: (Start) %C A138572 a(17) > 4500000. %C A138572 Observation: the known terms of this sequence are near a power of 2: %C A138572 k log_2(k) %C A138572 1 0.000000 %C A138572 6 2.584963 %C A138572 122 6.930737 %C A138572 2126 11.053926 %C A138572 7910 12.949462 %C A138572 8254 13.010878 %C A138572 16201 13.983795 %C A138572 32312 14.979782 %C A138572 32426 14.984863 %C A138572 32998 15.010091 %C A138572 65436 15.997797 %C A138572 261649 17.997273 %C A138572 261803 17.998122 %C A138572 1044017 19.993714 %C A138572 1050183 20.002209 %C A138572 4194999 22.000239 %C A138572 Searching near 2^23, 2^24, and 2^25 finds term 16783381. %C A138572 (End) %H A138572 Nick Hobson, <a href="/A138572/a138572.c.txt">C program</a> %e A138572 6^6 = 1011011001000000_2; 1+0+1+1+0+1+1+0+0+1+0+0+0+0+0+0 = 6; 6 mod 6 = 0. %t A138572 Select[Range[1100000],Divisible[Total[IntegerDigits[#^#,2]],#]&] (* _Harvey P. Dale_, Dec 18 2014 *) %o A138572 (PARI) isok(k) = !(hammingweight(k^k) % k); \\ _Michel Marcus_, Aug 20 2021 %o A138572 (C) See Links section. %Y A138572 Cf. A108827. %K A138572 base,hard,more,nonn %O A138572 1,2 %A A138572 _Robert Gerbicz_, May 12 2008 %E A138572 a(12)-a(15) from _Lars Blomberg_, Jul 01 2011 %E A138572 a(16) from _Nick Hobson_, Feb 05 2024