This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138584 #27 Jun 18 2025 21:49:28 %S A138584 3,5,353,33533,35353,3353533,3553553,333535333,335333533,355353553, %T A138584 355555553,33335353333,33553335533,35533333553,35553535553, %U A138584 3335535355333,3335555555333,3353353533533,3353355533533,3355535355533,3533355533353,3533533353353 %N A138584 Palindromic primes using only digits 3 and 5. %H A138584 Chai Wah Wu, <a href="/A138584/b138584.txt">Table of n, a(n) for n = 1..5382</a> %p A138584 revdigs:= proc(n) option remember; %p A138584 local b; %p A138584 if n < 10 then return n fi; %p A138584 b:= n mod 10; %p A138584 b*10^ilog10(n) + procname((n-b)/10); %p A138584 end proc: %p A138584 A:= {3,5}: %p A138584 B:= [0]: %p A138584 for d from 2 to 20 do %p A138584 if d::even then %p A138584 B:= map(t -> (10*t+3,10*t+5), B); %p A138584 A:= A union select(isprime, {seq(revdigs(b)+10^(d/2)*b,b=B)}); %p A138584 else %p A138584 A:= A union select(isprime, {seq(seq( %p A138584 revdigs(b)+i*10^((d-1)/2)+10^((d+1)/2)*b, i = [3,5]),b=B)}); %p A138584 fi %p A138584 od: %p A138584 sort(convert(A,list)); # _Robert Israel_, Dec 17 2015 %t A138584 RevDigs[n_] := Module[{b}, If[n < 10, Return[n]]; b = Mod[n, 10]; b * 10^Floor[Log10[n]] + RevDigs[(n - b)/10]];A = {3, 5};B = {0};Do[ If[EvenQ[d], B = Flatten[Map[{10*# + 3, 10*# + 5} &, B]]; A = Union[A, Select[Map[RevDigs[#] + 10^(d/2)*# &, B], PrimeQ, Infinity]], A = Union[A, Select[Flatten[Table[RevDigs[b] + i*10^((d-1)/2) + 10^((d+1)/2)*b, {b, B}, {i, {3, 5}}]], PrimeQ, Infinity]]; ], {d, 2, 20}];Sort[A] (* _James C. McMahon_, Jun 13 2025 *) %o A138584 (Python) %o A138584 from itertools import product %o A138584 from sympy import isprime %o A138584 A138584_list = [] %o A138584 for l in range(17): %o A138584 for d in product('35',repeat=l): %o A138584 s = ''.join(d) %o A138584 n = int(s+'3'+s[::-1]) %o A138584 if isprime(n): %o A138584 A138584_list.append(n) %o A138584 n += 2*10**l %o A138584 if isprime(n): %o A138584 A138584_list.append(n) # _Chai Wah Wu_, Dec 17 2015 %Y A138584 Cf. A020462. %K A138584 nonn,base %O A138584 1,1 %A A138584 _Paul Curtz_, May 13 2008 %E A138584 More terms from _Arkadiusz Wesolowski_, Dec 31 2011