cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138618 Triangle of exponentials of Mangoldt function M(n) read by rows, in which row products give the natural numbers.

This page as a plain text file.
%I A138618 #25 Feb 16 2025 08:33:08
%S A138618 1,2,1,3,1,1,2,2,1,1,5,1,1,1,1,1,3,2,1,1,1,7,1,1,1,1,1,1,2,2,1,2,1,1,
%T A138618 1,1,3,1,3,1,1,1,1,1,1,1,5,1,1,2,1,1,1,1,1,11,1,1,1,1,1,1,1,1,1,1,1,1,
%U A138618 2,3,1,2,1,1,1,1,1,1,13,1,1,1,1,1,1,1,1,1,1,1,1,1,7,1,1,1,1,2,1,1,1,1,1,1,1
%N A138618 Triangle of exponentials of Mangoldt function M(n) read by rows, in which row products give the natural numbers.
%C A138618 Row sums are A001414. This table is similar to A139547 and A120885.
%C A138618 Cumulative column products are A003418, A139550, A139552, A139554.
%H A138618 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MangoldtFunction.html">Mangoldt Function</a>.
%F A138618 T(n,k) = A014963(n/k) if n mod k = 0, otherwise 1. - _Mats Granvik_, May 23 2013
%e A138618 1 = 1
%e A138618 2*1 = 2
%e A138618 3*1*1 = 3
%e A138618 2*2*1*1 = 4
%e A138618 5*1*1*1*1 = 5
%e A138618 1*3*2*1*1*1 = 6
%e A138618 7*1*1*1*1*1*1 = 7
%e A138618 2*2*1*2*1*1*1*1 = 8
%e A138618 3*1*3*1*1*1*1*1*1 = 9
%e A138618 1*5*1*1*2*1*1*1*1*1 = 10
%e A138618 11*1*1*1*1*1*1*1*1*1*1 = 11
%e A138618 1*1*2*3*1*2*1*1*1*1*1*1 = 12
%e A138618 13*1*1*1*1*1*1*1*1*1*1*1*1 = 13
%t A138618 Flatten[Table[Table[If[Mod[n, k] == 0, Exp[MangoldtLambda[n/k]], 1], {k, 1, n}], {n, 1, 14}]] (* _Mats Granvik_, May 23 2013 *)
%o A138618 (PARI) M(n) = ispower(n, , &n); if(isprime(n), n, 1); \\ A014963
%o A138618 T(n,k) = if (n % k, 1, M(n/k));
%o A138618 row(n) = vector(n, k, T(n,k)); \\ _Michel Marcus_, Mar 03 2023
%Y A138618 Cf. A120885, A139547, A001414, A000027.
%K A138618 nonn,tabl
%O A138618 1,2
%A A138618 _Mats Granvik_, May 14 2008