A138650 Table where T(n,k) is the number of unordered trees with n edges (n+1 nodes) whose node out-degrees form the k-th partition of the integer n (in Mathematica order).
1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 4, 1, 1, 2, 2, 4, 4, 6, 1, 1, 2, 2, 4, 1, 8, 7, 2, 11, 9, 1, 1, 2, 2, 4, 2, 8, 7, 6, 5, 21, 11, 9, 24, 12, 1
Offset: 0
Examples
For the partition [2,1^2] (a(10)=T(4,4)) there are the four trees: ..o.....o.....o.....o ./.\.../.\....|.....| o...o.o...o...o.....o |...|.|....../.\....| o...o.o.....o...o...o ......|.....|....../.\ ......o.....o.....o...o Table T(n,k) begins: 1; 1; 1, 1; 1, 2, 1; 1, 2, 1, 4, 1; 1, 2, 2, 4, 4, 6, 1; 1, 2, 2, 4, 1, 8, 7, 2, 11, 9, 1; 1, 2, 2, 4, 2, 8, 7, 6, 5, 21, 11, 9, 24, 12, 1;