This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138673 #2 Mar 31 2012 10:22:07 %S A138673 1,1,1,4,5,9,16,9,8,16,25,34,16,41,27,24,16,15,55,16,55,19,51,2,62,16, %T A138673 50,16,38,109,2,117,16,131,16,88,40,93,127,85,16,45,16,63,16,40,58,33, %U A138673 16 %N A138673 Prime(n)^4 mod prime(n-1). %C A138673 Related sequences type prime(n)^k mod prime(n-1) (k=1,2,3,4) %C A138673 prime(n) mod prime(n-1) is given in A001223 %C A138673 prime(n)^2 mod prime(n-1) is given in A038702 %C A138673 prime(n)^3 mod prime(n-1) is given in A138672 %C A138673 prime(n)^4 mod prime(n-1) is given in A138673 %C A138673 prime(n)^5 mod prime(n-1) is given in A138674 %C A138673 prime(n)^6 mod prime(n-1) is given in A138675 %C A138673 prime(n)^7 mod prime(n-1) is given in A138676 %C A138673 prime(n)^8 mod prime(n-1) is given in A138677 %C A138673 prime(n)^9 mod prime(n-1) is given in A138678 %C A138673 prime(n)^10 mod prime(n-1) is given in A138679 %C A138673 prime(n)^11 mod prime(n-1) is given in A138680 %C A138673 prime(n)^12 mod prime(n-1) is given in A138681 %e A138673 a(1)=1 because 3^4 = 81 = 1 mod 2 %e A138673 a(2)=2 because 5^4 = 625 = 1 mod 3 %t A138673 Table[Mod[Prime[n]^4, Prime[n - 1]], {n, 2, 50}] %Y A138673 Cf. A001223, A038702, A138672, A138673, A138674, A138675, A138676, A138677, A138678, A138679, A138680, A138681. %K A138673 nonn %O A138673 0,4 %A A138673 _Artur Jasinski_, Mar 26 2008