This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138674 #2 Mar 31 2012 10:22:07 %S A138674 1,2,2,2,10,10,15,17,2,3,26,25,32,35,21,38,32,29,19,32,38,76,57,16,54, %T A138674 32,97,32,43,57,8,47,32,59,32,75,83,46,94,164,32,88,32,59,32,82,63, %U A138674 132,32 %N A138674 Prime(n)^5 mod prime(n-1). %C A138674 Related sequences type prime(n)^k mod prime(n-1) (k=1,2,3,4) %C A138674 prime(n) mod prime(n-1) is given in A001223 %C A138674 prime(n)^2 mod prime(n-1) is given in A038702 %C A138674 prime(n)^3 mod prime(n-1) is given in A138672 %C A138674 prime(n)^4 mod prime(n-1) is given in A138673 %C A138674 prime(n)^5 mod prime(n-1) is given in A138674 %C A138674 prime(n)^6 mod prime(n-1) is given in A138675 %C A138674 prime(n)^7 mod prime(n-1) is given in A138676 %C A138674 prime(n)^8 mod prime(n-1) is given in A138677 %C A138674 prime(n)^9 mod prime(n-1) is given in A138678 %C A138674 prime(n)^10 mod prime(n-1) is given in A138679 %C A138674 prime(n)^11 mod prime(n-1) is given in A138680 %C A138674 prime(n)^12 mod prime(n-1) is given in A138681 %e A138674 a(1)=1 because 3^5 = 243 = 1 mod 2 %e A138674 a(2)=2 because 5^5 = 3125 = 2 mod 3 %t A138674 Table[Mod[Prime[n]^5, Prime[n - 1]], {n, 2, 50}] %Y A138674 Cf. A001223, A038702, A138672, A138673, A138674, A138675, A138676, A138677, A138678, A138679, A138680, A138681. %K A138674 nonn %O A138674 2,2 %A A138674 _Artur Jasinski_, Mar 26 2008