cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138696 Primes p such that 30*p-1, 30*p+1 and 36*p-1, 36*p+1 are twin primes.

This page as a plain text file.
%I A138696 #13 Sep 08 2022 08:45:33
%S A138696 2,5,457,1013,2683,5413,46307,51287,67433,99223,116443,146603,149837,
%T A138696 159017,172373,181277,187987,199523,248477,249503,259163,278903,
%U A138696 279337,286333,293893,294803,304813,312527,315037,335743,379433,392593,393713
%N A138696 Primes p such that 30*p-1, 30*p+1 and 36*p-1, 36*p+1 are twin primes.
%H A138696 Vincenzo Librandi, <a href="/A138696/b138696.txt">Table of n, a(n) for n = 1..2000</a>
%e A138696 30*2-1=59, 30*2+1=61; 36*2-1=71, 36*2+1=73;
%e A138696 30*5-1=149, 30*5+1=151; 36*5-1=179, 36*5+1=181; ...
%t A138696 a=30;b=36;Select[Prime[Range[14^4]],PrimeQ[a*#-1]&&PrimeQ[a*#+1]&&PrimeQ[b*#-1]&&PrimeQ[b*#+1]&]
%t A138696 Select[Prime[Range[35000]],AllTrue[Flatten[{30#+{1,-1},36#+{1,-1}}], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Jan 20 2015 *)
%o A138696 (Magma) [p: p in PrimesUpTo(1000000)| IsPrime(30*p-1) and IsPrime(30*p+1) and IsPrime(36*p-1) and IsPrime(36*p+1)]; // _Vincenzo Librandi_, Nov 24 2010
%K A138696 nonn,easy
%O A138696 1,1
%A A138696 _Vladimir Joseph Stephan Orlovsky_, May 15 2008
%E A138696 More terms from _Vincenzo Librandi_, Apr 01 2010