cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138703 a(n) is the sum of the terms in the continued fraction of the absolute value of B_n, the n-th Bernoulli number.

This page as a plain text file.
%I A138703 #21 Apr 14 2023 10:53:32
%S A138703 1,2,6,0,30,0,42,0,30,0,18,0,37,0,7,0,28,0,96,0,559,0,6210,0,86617,0,
%T A138703 1425523,0,27298263,0,601580913,0,15116315788,0,429614643067,0,
%U A138703 13711655205344,0,488332318973599,0,19296579341940107,0,841693047573684421,0,40338071854059455479
%N A138703 a(n) is the sum of the terms in the continued fraction of the absolute value of B_n, the n-th Bernoulli number.
%C A138703 For all odd n >=3, a(n) = 0.
%H A138703 Jinyuan Wang, <a href="/A138703/b138703.txt">Table of n, a(n) for n = 0..635</a>
%e A138703 The 12th Bernoulli number is -691/2730. Now 691/2730 = the continued fraction 0 + 1/(3 + 1/(1 + 1/(19 + 1/(3 + 1/11)))). So a(12) = 0 + 3 + 1 + 19 + 3 + 11 = 37.
%p A138703 A138701row := proc(n) local B; B := abs(bernoulli(n)) ; numtheory[cfrac](B,20,'quotients') ; end: A138703 := proc(n) add(c,c=A138701row(n)) ; end: seq(op(A138703(n)),n=0..80) ; # _R. J. Mathar_, Jul 20 2009
%t A138703 Table[ ContinuedFraction[ BernoulliB[n] // Abs] // Total, {n, 0, 50}] (* _Jean-François Alcover_, Mar 27 2013 *)
%o A138703 (PARI) a(n) = vecsum(contfrac(abs(bernfrac(n)))); \\ _Jinyuan Wang_, Aug 07 2021
%o A138703 (Python)
%o A138703 from sympy import continued_fraction, bernoulli
%o A138703 def A138703(n): return sum(continued_fraction(abs(bernoulli(n)))) # _Chai Wah Wu_, Apr 14 2023
%Y A138703 Cf. A027641/A027642, A138701, A138702, A138706.
%K A138703 nonn
%O A138703 0,2
%A A138703 _Leroy Quet_, Mar 26 2008
%E A138703 Extended beyond a(15) by _R. J. Mathar_, Jul 20 2009
%E A138703 More terms from _Jean-François Alcover_, Mar 27 2013