cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138706 a(n) is the sum of the terms in the continued fraction expansion of the absolute value of B_{2n}, the (2n)-th Bernoulli number.

This page as a plain text file.
%I A138706 #21 Apr 14 2023 10:54:10
%S A138706 1,6,30,42,30,18,37,7,28,96,559,6210,86617,1425523,27298263,601580913,
%T A138706 15116315788,429614643067,13711655205344,488332318973599,
%U A138706 19296579341940107,841693047573684421,40338071854059455479,2115074863808199160579,120866265222965259346062
%N A138706 a(n) is the sum of the terms in the continued fraction expansion of the absolute value of B_{2n}, the (2n)-th Bernoulli number.
%F A138706 a(n) = A138703(2*n). - _R. J. Mathar_, Jul 20 2009
%e A138706 The 12th Bernoulli number is -691/2730. Now 691/2730 has the continued fraction 0 + 1/(3 + 1/(1 + 1/(19 + 1/(3 + 1/11)))). So a(6) = 0 + 3 + 1 + 19 + 3 + 11 = 37.
%p A138706 A138704row := proc(n) local B; B := abs(bernoulli(2*n)) ; numtheory[cfrac](B,20,'quotients') ; end: A138706 := proc(n) add(c,c=A138704row(n)) ; end: seq(op(A138706(n)),n=0..30) ; # _R. J. Mathar_, Jul 20 2009
%t A138706 Table[Total[ContinuedFraction[Abs[BernoulliB[2n]]]],{n,0,25}] (* _Harvey P. Dale_, Feb 23 2012 *)
%o A138706 (PARI) a(n) = vecsum(contfrac(abs(bernfrac(2*n)))); \\ _Jinyuan Wang_, Aug 07 2021
%o A138706 (Python)
%o A138706 from sympy import continued_fraction, bernoulli
%o A138706 def A138706(n): return sum(continued_fraction(abs(bernoulli(n<<1)))) # _Chai Wah Wu_, Apr 14 2023
%Y A138706 Cf. A027641/A027642, A138703, A138704, A138705.
%K A138706 nonn
%O A138706 0,2
%A A138706 _Leroy Quet_, Mar 26 2008
%E A138706 a(7)-a(22) from _R. J. Mathar_, Jul 20 2009
%E A138706 More terms from _Jinyuan Wang_, Aug 07 2021