This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138736 #6 Oct 30 2017 09:07:01 %S A138736 1,1,4,36,368,5200,90432,1884736,45817088,1273874688,39891461120, %T A138736 1389816423424,53334303584256,2235679577657344,101651458028158976, %U A138736 4983219643056537600,262026143585449607168,14711289584591513387008 %N A138736 Inverse binomial transform of A138737. %C A138736 The n-th term of the n-th inverse binomial transform of A138737 equals (n+1)^(n-1) for n>=0. %C A138736 Related to LambertW(-x)/(-x) = Sum_{n>=0} (n+1)^(n-1)*x^n/n!. %H A138736 Vaclav Kotesovec, <a href="/A138736/b138736.txt">Table of n, a(n) for n = 0..300</a> %F A138736 O.g.f. satisfies: [x^n] A( x/(1+(n-1)*x) )/(1+(n-1)*x) = (n+1)^(n-1) for n>=0. %F A138736 E.g.f. satisfies: [x^n] A(x)*exp(-(n-1)*x) = (n+1)^(n-1)/n! for n>=0. %F A138736 a(n) ~ (1 + LambertW(exp(-1)))^(3/2)*n^(n-1) / (exp(n-2)*LambertW(exp(-1))^(n-1)). - _Vaclav Kotesovec_, Oct 30 2017 %o A138736 (PARI) {a(n)=local(A=[1]);for(k=1,n,A=concat(A,0); A[k+1]=(k+1)^(k-1)-Vec(subst(Ser(A),x,x/(1+(k-1)*x+x*O(x^k)))/(1+(k-1)*x))[k+1]);A[n+1]} %Y A138736 Cf. A138737. %K A138736 nonn %O A138736 0,3 %A A138736 _Paul D. Hanna_, Apr 05 2008