cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138751 a(n) = nextprime( p(n)/2 if p(n)=2 (mod 3), 2p(n) else ) = A007918( A138750( A000040( n ))).

Original entry on oeis.org

2, 7, 3, 17, 7, 29, 11, 41, 13, 17, 67, 79, 23, 89, 29, 29, 31, 127, 137, 37, 149, 163, 43, 47, 197, 53, 211, 59, 223, 59, 257, 67, 71, 281, 79, 307, 317, 331, 89, 89, 97, 367, 97, 389, 101, 401, 431, 449, 127, 461, 127, 127, 487, 127, 131, 137, 137, 547, 557, 149
Offset: 1

Views

Author

M. F. Hasler, Mar 28 2008

Keywords

Comments

Composing the map A138750 with A007918 to the left and restricting it to the primes makes it a mapping from primes into primes which is a natural generalization of the Collatz problem to primes. (Looking at parity would not be interesting for primes, so using "mod 3" is the simplest nontrivial generalization.)
The only even prime p=2 is the only fixed point of this map and all odd primes seem to end up in the loop 7 -> 17 -> 11 -> 7, after a number of steps given in A138752.
The sequence A124123 lists the primes which do not occur in the present sequence.
See A138750 for further information.

Examples

			a(1) = nextprime(2/2) = 2, a(2) = nextprime(2*3) = 7, a(3) = nextprime(5/2) = 7.
		

Crossrefs

Programs

  • Mathematica
    A138751[n_]:=With[{p=Prime[n]},NextPrime[If[Mod[p,3]==2,p/2,2p]]];Array[A138751,100] (* Paolo Xausa, Jul 28 2023 *)
  • PARI
    A138751(n) = { n=prime(n); nextprime( if( n%3==2, ceil(n/2), 2*n ))}

Formula

a(n) = A007918(A138750(A000040(n))).