A138758 Index of A001203(n) (continued fraction for Pi) in A000040 (primes), or 0 if A001203(n) is not prime.
2, 4, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 2, 6, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 2, 3, 0, 0, 0, 0, 0, 4, 0, 1, 2, 4, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 1, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 3, 0, 0, 1
Offset: 1
Keywords
Examples
This sequence starts 2,4,0,0,... since the 1st and 2nd terms of the continued fraction expansion of Pi, A001203 = (3, 7, 15, 1, ...) are the 2nd resp. 4th primes, while the next two terms are not primes.
Programs
-
PARI
default(realprecision,1000); t=contfrac(Pi); vector(#t,i,isprime(t[i])*primepi(t[i]))