A138760 Numbers n such that n^4 is a sum of 4th powers of four nonzero integers whose sum is n.
5491, 10982, 16473, 21964, 27455, 32946, 38437, 43928, 49419, 51361, 54910, 60401, 65892, 71383, 76874, 82365, 87856, 93347, 98838, 102722, 104329, 109820, 115311, 120802, 126293, 131784, 137275, 142766, 148257, 153748, 154083, 159239, 164730
Offset: 1
Keywords
Examples
5491^4 = 5400^4 + (-2634)^4 + 1770^4 + 955^4 and 5491 = 5400 - 2634 + 1770 + 955, so 5491 is a member (Brudno). 51361^4 = 48150^4 + (-31764)^4 + 27385^4 + 7590^4 and 51361 = 48150 - 31764 + 27385 + 7590, so 51361 is a member (Wroblewski). 1347505009^4 = 1338058950^4 + (-89913570)^4 + 504106884^4 + (-404747255)^4, and 1347505009 = 1338058950 - 89913570 + 504106884 - 404747255, so 1347505009 is a member (Jacobi-Madden).
Links
- Simcha Brudno, A further example of A^4 + B^4 + C^4 + D^4 = E^4, Proc. Camb. Phil. Soc. 60 (1964) 1027-1028.
- Noam Elkies, On A^4 + B^4 + C^4 = D^4, Math. Comp. 51 (1988) 825-835.
- Lee W. Jacobi and Daniel J. Madden, On a^4 + b^4 + c^4 + d^4 = (a+b+c+d)^4, Amer. Math. Monthly 115 (2008) 220-236.
- Lee W. Jacobi and Daniel J. Madden, On a^4 + b^4 + c^4 + d^4 = (a+b+c+d)^4
- Eric Weisstein's MathWorld, Diophantine equation - 4th powers
- Jaroslaw Wroblewski, Exhaustive list of 1009 solutions to (4,1,4) below 222,000
Formula
n^4 = a^4 + b^4 + c^4 + d^4 = (a+b+c+d)^4 with abcd =/= 0.
Comments