cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138773 Triangle read by rows: T(n,k) is the coefficient of x^k in the polynomial P[n](x) = b(n)Q[n](x), where b(n) = numerator of binomial(2n,n)/2^n = A001790(n) and Q[n](x) = F(-n,1; 1/2-n; x) (hypergeometric function); 0 <= k <= n.

Original entry on oeis.org

1, 1, 2, 3, 4, 8, 5, 6, 8, 16, 35, 40, 48, 64, 128, 63, 70, 80, 96, 128, 256, 231, 252, 280, 320, 384, 512, 1024, 429, 462, 504, 560, 640, 768, 1024, 2048, 6435, 6864, 7392, 8064, 8960, 10240, 12288, 16384, 32768, 12155, 12870, 13728, 14784, 16128, 17920, 20480, 24576, 32768, 65536
Offset: 0

Views

Author

Emeric Deutsch, Apr 12 2008

Keywords

Comments

The polynomials Q[n](x) arise in a contact problem in elasticity theory.
Row sums yield A001803.
T(n,0) = A001790(n).
T(n,n) = A046161(n).

Examples

			Triangle begins:
   1,
   1,  2,
   3,  4,  8,
   5,  6,  8, 16,
  35, 40, 48, 64, 128,
  63, 70, 80, 96, 128, 256,
  ...
		

References

  • E. G. Deich (E. Deutsch), On an axially symmetric contact problem for a non-plane stamp with a circular cross-section (in Russian), Prikl. Mat. Mekh., 26, No. 5, 1962, 931-934.

Crossrefs

Cf. A001803 (row sums), A001790 (1st column), A046161 (right diagonal).

Programs

  • Maple
    p:=proc(n) options operator, arrow: numer(simplify(hypergeom([ -n, 1], [1/2-n], x))) end proc: for n from 0 to 9 do P[n]:=p(n) end do: for n from 0 to 9 do seq(coeff(P[n],x,k),k=0..n) end do;
  • Mathematica
    b[n_] := Numerator[Binomial[2n, n]/2^n];
    Q[n_][x_] := HypergeometricPFQ[{-n, 1}, {1/2 - n}, x];
    T[n_, k_] := Coefficient[b[n]*Q[n][x], x, k];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 23 2024 *)

Formula

Q[n](x) = (2n+1)*(Integral_{t=0..sqrt(1-x)} (x+t^2)^n dt)/sqrt(1-x).
Q[n](x) = 1 + 2*n*x*Q[n-1](x)/(2n-1).