This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138792 #26 Mar 07 2023 15:37:46 %S A138792 2,11,67,23,89,53,83,29,173,19,197,193,337,167,269,79,757,397,379,479, %T A138792 3677,769,997,6967,1699,3889,9857,7867,6959,9949,16987,9887,49697, %U A138792 47599,18899,67979,73999,56999,197699,49999,159899,189989,98899,98999,988877 %N A138792 Least prime, p, such that p mod (sum of the digits of p) = n. %C A138792 First occurrence of n in A136251. %H A138792 David A. Corneth, <a href="/A138792/b138792.txt">Table of n, a(n) for n = 0..181</a> (first 74 terms from Robert G. Wilson v) %e A138792 a(2) = 67 = 13*5+2 <--> 67 (mod 13) = 2. %p A138792 V:= Array(0..50): count:= 0: p:= 1: %p A138792 while count < 51 do %p A138792 p:= nextprime(p); %p A138792 s:= convert(convert(p,base,10),`+`); %p A138792 v:= p mod s; %p A138792 if v <= 50 and V[v] = 0 then V[v]:= p; count:= count+1; fi %p A138792 od: %p A138792 convert(V,list); # _Robert Israel_, Mar 07 2023 %t A138792 f[n_] := Block[{p = Prime@ n}, Mod[p, Plus @@ IntegerDigits@ p]]; t = Table[0, {1000}]; Do[ a = f@n; If[a < 1000 && t[[a + 1]] == 0, t[[a + 1]] = Prime@ n; Print[{a, Prime@n}]], {n, 503200000}] %t A138792 lp[n_]:=Module[{p=2},While[Mod[p,Total[IntegerDigits[p]]]!=n,p= NextPrime[ p]];p]; Array[lp,50,0] (* _Harvey P. Dale_, Jan 15 2019 *) %o A138792 (PARI) a(n) = my(p=2); while ((p % sumdigits(p)) != n, p=nextprime(p+1)); p; \\ _Michel Marcus_, Mar 07 2023 %o A138792 (Python) %o A138792 from sympy import nextprime %o A138792 from itertools import islice %o A138792 def agen(): # generator of terms %o A138792 adict, n, p = dict(), 0, 2 %o A138792 while True: %o A138792 v = p%sum(map(int, str(p))) %o A138792 if v not in adict: adict[v] = p %o A138792 while n in adict: yield adict[n]; n += 1 %o A138792 p = nextprime(p) %o A138792 print(list(islice(agen(), 45))) # _Michael S. Branicky_, Mar 07 2023 %Y A138792 Cf. A136251, A138791. %K A138792 base,nonn %O A138792 0,1 %A A138792 _Robert G. Wilson v_, Mar 28 2008 %E A138792 Name corrected by _Robert Israel_, Mar 07 2023