cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138800 Number of monomials in discriminant of polynomial x^n + a_{n-2} x^{n-2} + ... + a_0.

This page as a plain text file.
%I A138800 #33 Mar 28 2019 11:41:11
%S A138800 1,1,2,6,19,76,320,1469,7048,35233,181656,960800,5189579
%N A138800 Number of monomials in discriminant of polynomial x^n + a_{n-2} x^{n-2} + ... + a_0.
%e A138800 a(4)=6 because discriminant of quartic x^4+a*x^2+b*x+c is -4*a^3*b^2 - 27*b^4 + 16*a^4*c + 144*a*b^2*c - 128*a^2*c^2 + 256*c^3 that consists of 6 monomials (parts).
%p A138800 1, 1, seq(nops(expand(discrim(x^n + add(c[i]*x^i,i=0..n-2),x))),n=3..12); # _Robert Israel_, Aug 10 2015
%t A138800 ClearAll[f]; a = {1,1}; Do[k = 0; Do[If[n > s - 2, If[n > s - 1, k = k + x^n], k = k + f[n] x^n], {n, 0, s}]; m = Resultant[k, D[k, x], x]; AppendTo[a, Length[m]], {s, 3, 8}]; a (* fixed by _Vaclav Kotesovec_, Mar 20 2019 *)
%t A138800 Flatten[{1, 1, Table[Length[Discriminant[x^n + Sum[Subscript[c, k]*x^k, {k, 0, n-2}], x]], {n, 3, 8}]}] (* _Vaclav Kotesovec_, Mar 20 2019 *)
%Y A138800 Cf. A007878, A138787, A138788, A138801, A138802.
%K A138800 nonn,more
%O A138800 1,3
%A A138800 _Artur Jasinski_, Mar 30 2008
%E A138800 a(2) and Mathematica program corrected [previously had erroneous a(2)=2 because of Length syntax in Mathematica] by Alan Sokal and Andrea Sportiello (sokal(AT)nyu.edu), Jun 17 2010
%E A138800 a(9) to a(12) from _Robert Israel_, Aug 10 2015
%E A138800 a(13) from _Vaclav Kotesovec_, Mar 28 2019