cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138801 Number of monomials in discriminant of symbolic principal (with two zeros coefficients by x^(n-1) and x^(n-2)) polynomial n degree.

This page as a plain text file.
%I A138801 #33 Mar 02 2023 04:32:56
%S A138801 1,1,2,2,6,23,92,409,1916,9346,47182,244865,1300086
%N A138801 Number of monomials in discriminant of symbolic principal (with two zeros coefficients by x^(n-1) and x^(n-2)) polynomial n degree.
%e A138801 a(5)=6 because discriminant of quintic x^5+a*x^2+b*x+c is: -27*a^4*b^2 + 256*b^5 + 108*a^5*c - 1600*a*b^3*c + 2250*a^2*b*c^2 + 3125*c^4 that consists of 6 monomials (parts).
%t A138801 a = {1, 1}; Do[k = 0; Do[If[n > s - 3, If[(n > s - 1) && ((n > s - 2)), k = k + x^n], k = k + f[n] x^n], {n, 0, s}]; m = Resultant[k, D[k, x], x]; AppendTo[a, Length[m]], {s, 3, 9}]; a (* fixed by _Vaclav Kotesovec_, Mar 20 2019 *)
%t A138801 Flatten[{1, 1, Table[Length[Discriminant[x^n + Sum[Subscript[c, k]*x^k, {k, 0, n-3}], x]], {n, 3, 9}]}] (* _Vaclav Kotesovec_, Mar 20 2019 *)
%Y A138801 Cf. A007878, A138787, A138788, A138800, A138802.
%K A138801 nonn,more
%O A138801 1,3
%A A138801 _Artur Jasinski_, Mar 30 2008
%E A138801 a(10)-a(12) from _Vaclav Kotesovec_, Mar 21 2019
%E A138801 a(13) from _Vaclav Kotesovec_, Mar 28 2019