cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138824 Divisors of 4064 (the 4th perfect number divided by 2), written in base 2.

This page as a plain text file.
%I A138824 #10 Oct 12 2016 16:11:38
%S A138824 1,10,100,1000,10000,100000,1111111,11111110,111111100,1111111000,
%T A138824 11111110000,111111100000
%N A138824 Divisors of 4064 (the 4th perfect number divided by 2), written in base 2.
%C A138824 a(n) has n digits. See A138814 for more information.
%H A138824 <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a>
%e A138824 The structure of divisors of 4064 (see A138814)
%e A138824 .................................................................
%e A138824 n ........... Divisor . Formula ....... Divisor written in base 2
%e A138824 .................................................................
%e A138824 1) ................ 1 = 2^0 ........... 1
%e A138824 2) ................ 2 = 2^1 ........... 10
%e A138824 3) ................ 4 = 2^2 ........... 100
%e A138824 4) ................ 8 = 2^3 ........... 1000
%e A138824 5) ............... 16 = 2^4 ........... 10000
%e A138824 6) A134708(4) = .. 32 = 2^5 ........... 100000
%e A138824 7) A000668(4) = . 127 = 2^7 - 2^0 ..... 1111111
%e A138824 8) .............. 254 = 2^8 - 2^1 ..... 11111110
%e A138824 9) .............. 508 = 2^9 - 2^2 ..... 111111100
%e A138824 10) ............ 1016 = 2^10- 2^3 ..... 1111111000
%e A138824 11) ............ 2032 = 2^11- 2^4 ..... 11111110000
%e A138824 12) A133028(4) = 4064 = 2^12- 2^5 ..... 111111100000
%t A138824 FromDigits/@(IntegerDigits[#,2]&/@Divisors[4064]) (* _Harvey P. Dale_, Oct 12 2016 *)
%Y A138824 Perfect number divided by 2: A133028. Cf. A000043, A000396, A000668, A090748, A134708, A135654, A138814.
%K A138824 easy,fini,full,nonn,less
%O A138824 1,2
%A A138824 _Omar E. Pol_, Mar 31 2008