A138851 Nearest integer to 1/(round(x)-x), where exp(Pi sqrt(n))-744 = (12(x^2-1))^3.
-4, -3, -2, 2, 3, 5, 12, -33, -7, -4, -2, 2, 3, 6, 8954018, -6, -3, 2, 3, 9, -12, -3, -2, 4, 18, -6, -2, 3, 14, -5, -2, 4, -21, -3, 3, 51, -3, 3, 2683620901418, -3, 4, -9, 2, 11, -3, 4, -5, 3, -10, 2, -17, 2, -14, 2, -7, 3, -4, 7, -2, -16, 3, -3, 31514540715033062, 3, -3, -12, 5, 2, -3, -9, 12, 4, 2, -2, -3, -4, -7, -10, -16, -19, -16
Offset: 5
Keywords
Examples
We have e^(Pi sqrt(19))-744 = (12(x^2-1))^3 with x = 2.9999998883... = 3 - 1/8954017.533..., therefore a(19) = 8954018. In the same way, e^(Pi sqrt(163))-744 = (12(x^2-1))^3 with x = 230.999999999999999999999999999890... = 231 - 1/9093255353570474976233448828.20..., thus a(163) = 9093255353570474976233448828.
Links
- Amiram Eldar, Table of n, a(n) for n = 5..10000
- Titus Piezas III, "More on e^(pi*sqrt(163))" on sci.math.research, April 13, 2008 and The Ramanujan Pages.
Programs
-
Mathematica
a[n_] := Module[{x = Sqrt[Surd[Exp[Pi * Sqrt[n]] - 744, 3] / 12 + 1]}, Round[1/(Round[x] - x)]]; Array[a, 100, 5] (* Amiram Eldar, Jan 17 2025 *)
-
PARI
default(realprecision,200); A138851(n)={ n=frac( sqrt( sqrtn( exp( sqrt(n)*Pi )-744, 3)/12 + 1 )); round( 1/(round(n)-n)) }
Comments