A138853 Numbers which are the sum of 3 cubes of distinct odd primes.
495, 1483, 1701, 1799, 2349, 2567, 2665, 3555, 3653, 3871, 5065, 5283, 5381, 6271, 6369, 6587, 7011, 7137, 7229, 7235, 7327, 7453, 8217, 8315, 8441, 8533, 9083, 9181, 9399, 10387, 11799, 11897, 12115, 12319, 12537, 12635, 13103, 13525, 13623, 13841
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..560 from R. J. Mathar)
- Index to sequences related to sums of cubes.
Programs
-
PARI
isA138853(n)= local( c,d); n>494 && forprime( p=floor( sqrtn( n\3+1,3))+1, floor( sqrtn( n-151,3)), d=n-p^3; forprime( q=floor( sqrtn( d\2+1,3))+1, min( p-1, floor( sqrtn( d-26,3))), round( sqrtn( c=d-q^3,3 ))^3==c || next; isprime( round( sqrtn( c,3 ))) && return(1))) forstep(n=3^3+5^3+7^3,10^5,2, isA138853(n)&print1(n", "))
Formula
A138853={ p(i)^3+p(j)^3+p(k)^3 ; i>j>k>1 }
Comments