cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138854 Numbers which are the sum of three cubes of distinct primes.

This page as a plain text file.
%I A138854 #22 May 09 2021 11:20:08
%S A138854 160,378,476,495,1366,1464,1483,1682,1701,1799,2232,2330,2349,2548,
%T A138854 2567,2665,3536,3555,3653,3871,4948,5046,5065,5264,5283,5381,6252,
%U A138854 6271,6369,6587,6894,6992,7011,7118,7137,7210,7229,7235,7327,7453,8198,8217,8315
%N A138854 Numbers which are the sum of three cubes of distinct primes.
%C A138854 This is a subsequence of A024975. The odd terms of this sequence are A138853, the even terms are 8+{ even terms of A120398 }. Thus primes in this sequence, A137365, are the same as primes in A138853.
%H A138854 Chai Wah Wu, <a href="/A138854/b138854.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..621 from R. J. Mathar)
%H A138854 <a href="/index/Su#ssq">Index to sequences related to sums of cubes</a>.
%F A138854 A138854 = { p(i)^3+p(j)^3+p(k)^3 ; i>j>k>0 } = A138853 union { p(i)^3+p(j)^3+8 ; i>j>1}
%p A138854 isA030078 := proc(n)
%p A138854     local f ;
%p A138854     if n < 8 then
%p A138854         false;
%p A138854     else
%p A138854         f := ifactors(n)[2] ;
%p A138854         if nops(f) = 1 and op(2,op(1,f)) = 3 then
%p A138854             true;
%p A138854         else
%p A138854             false;
%p A138854         end if;
%p A138854     end if;
%p A138854 end proc:
%p A138854 isA138854 := proc(n)
%p A138854     local i,j,p,q,r,rcub ;
%p A138854     for i from 1 do
%p A138854         p := ithprime(i) ;
%p A138854         if p^3+(p+1)^3+(p+2)^3 > n then
%p A138854             return false;
%p A138854         end if;
%p A138854         for j from i+1 do
%p A138854             q := ithprime(j) ;
%p A138854             rcub := n-q^3-p^3 ;
%p A138854             if rcub <= q^3 then
%p A138854                 break;
%p A138854             fi ;
%p A138854             if isA030078(rcub) then
%p A138854                 return true;
%p A138854             end if;
%p A138854         end do:
%p A138854     end do:
%p A138854 end proc:
%p A138854 for n from 5 do
%p A138854     if isA138854(n) then
%p A138854         print(n);
%p A138854     end if;
%p A138854 end do: # _R. J. Mathar_, Jun 09 2014
%t A138854 f[upto_]:=Module[{maxp=PrimePi[Floor[Power[upto, (3)^-1]]]}, Select[Union[Total/@(Subsets[Prime[Range[maxp]],{3}]^3)],#<=upto&]]; f[9000]  (* _Harvey P. Dale_, Mar 21 2011 *)
%o A138854 (PARI) isA138854(n)={ if( n%2, isA138853(n), isA120398(n-8)) }
%o A138854 for( n=1,10^4, isA138854(n) & print1(n", "))
%Y A138854 Cf. A024975 (a^3+b^3+c^3, a>b>c>0), A138853 (odd terms of this), A120398, A137365 (primes in A138853 / A138854).
%K A138854 nonn
%O A138854 1,1
%A A138854 _M. F. Hasler_, Apr 13 2008