cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138879 Sum of all parts of the last section of the set of partitions of n.

This page as a plain text file.
%I A138879 #67 Oct 02 2023 20:14:46
%S A138879 1,3,5,11,15,31,39,71,94,150,196,308,389,577,750,1056,1353,1881,2380,
%T A138879 3230,4092,5412,6821,8935,11150,14386,17934,22834,28281,35735,43982,
%U A138879 55066,67551,83821,102365,126267,153397,188001,227645,277305,334383
%N A138879 Sum of all parts of the last section of the set of partitions of n.
%C A138879 Row sums of the triangles A135010, A138121, A138151 and others related to the section model of partitions (see A135010 and A138121).
%C A138879 From _Omar E. Pol_, Jan 20 2021: (Start)
%C A138879 Convolution of A000203 and A002865.
%C A138879 Convolution of A340793 and A000041.
%C A138879 Row sums of triangles A339278, A340426, A340583. (End)
%C A138879 a(n) is also the sum of all divisors of all terms of n-th row of A336811. These divisors are also all parts in the last section of the set of partitions of n. - _Omar E. Pol_, Jul 27 2021
%C A138879 Row sums of A336812. - _Omar E. Pol_, Aug 03 2021
%H A138879 Vaclav Kotesovec, <a href="/A138879/b138879.txt">Table of n, a(n) for n = 1..10000</a>
%F A138879 a(n) = A000041(n)*n - A000041(n-1)*(n-1) = A138880(n) + A000041(n-1).
%F A138879 a(n) = A066186(n) - A066186(n-1), for n>=1.
%F A138879 a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi/(12*sqrt(2*n)) * (1 - (72 + 13*Pi^2) / (24*Pi*sqrt(6*n)) + (7/12 + 3/(2*Pi^2) + 217*Pi^2/6912)/n - (15*sqrt(3/2)/(16*Pi) + 115*Pi/(288*sqrt(6)) + 4069*Pi^3/(497664*sqrt(6)))/n^(3/2)). - _Vaclav Kotesovec_, Oct 21 2016, extended Jul 06 2019
%F A138879 G.f.: x*(1 - x)*f'(x), where f(x) = Product_{k>=1} 1/(1 - x^k). - _Ilya Gutkovskiy_, Apr 13 2017
%e A138879 a(6)=31 because the parts of the last section of the set of partitions of 6 are (6), (3,3), (4,2), (2,2,2), (1), (1), (1), (1), (1), (1), (1), so the sum is a(6) = 6 + 3 + 3 + 4 + 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 31.
%e A138879 From _Omar E. Pol_, Aug 13 2013: (Start)
%e A138879 Illustration of initial terms:
%e A138879 .                                           _ _ _ _ _ _
%e A138879 .                                          |_ _ _ _ _ _|
%e A138879 .                                          |_ _ _|_ _ _|
%e A138879 .                                          |_ _ _ _|_ _|
%e A138879 .                               _ _ _ _ _  |_ _|_ _|_ _|
%e A138879 .                              |_ _ _ _ _|           |_|
%e A138879 .                     _ _ _ _  |_ _ _|_ _|           |_|
%e A138879 .                    |_ _ _ _|         |_|           |_|
%e A138879 .             _ _ _  |_ _|_ _|         |_|           |_|
%e A138879 .       _ _  |_ _ _|       |_|         |_|           |_|
%e A138879 .   _  |_ _|     |_|       |_|         |_|           |_|
%e A138879 .  |_|   |_|     |_|       |_|         |_|           |_|
%e A138879 .
%e A138879 .   1    3      5        11         15           31
%e A138879 .
%e A138879 (End)
%e A138879 On the other hand for n = 6 the 6th row of triangle A336811 is [6, 4, 3, 2, 2, 1, 1] and the sum of all divisors of these terms is [1 + 2 + 3 + 6] + [1 + 2 + 4] + [1 + 3] + [1 + 2] + [1 + 2] + [1] + [1] = 31, so a(6) = 31. - _Omar E. Pol_, Jul 27 2021
%p A138879 A066186 := proc(n) n*combinat[numbpart](n) ; end proc:
%p A138879 A138879 := proc(n) A066186(n)-A066186(n-1) ; end proc:
%p A138879 seq(A138879(n),n=1..80) ; # _R. J. Mathar_, Jan 27 2011
%t A138879 Table[PartitionsP[n]*n - PartitionsP[n-1]*(n-1), {n, 1, 50}] (* _Vaclav Kotesovec_, Oct 21 2016 *)
%o A138879 (PARI) for(n=1, 50, print1(numbpart(n)*n - numbpart(n - 1)*(n - 1),", ")) \\ _Indranil Ghosh_, Mar 19 2017
%o A138879 (Python)
%o A138879 from sympy.ntheory import npartitions
%o A138879 print([npartitions(n)*n - npartitions(n - 1)*(n - 1) for n in range(1, 51)]) # _Indranil Ghosh_, Mar 19 2017
%Y A138879 Cf. A000041, A000203, A002865, A066186, A133041, A135010, A138121, A138135 - A138138, A138151, A138880, A139100, A237593, A336811, A336812, A338156, A339278, A340035, A340426, A340583, A340793.
%K A138879 nonn
%O A138879 1,2
%A A138879 _Omar E. Pol_, Apr 30 2008
%E A138879 a(34) corrected by _R. J. Mathar_, Jan 27 2011