This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138882 #9 Sep 27 2024 05:42:48 %S A138882 1,2,1,2,4,1,2,4,8,16,1,2,4,8,16,32,64,1,2,4,8,16,32,64,128,256,512, %T A138882 1024,2048,4096,1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192, %U A138882 16384,32768,65536,1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384 %N A138882 Triangle read by rows: row n lists divisors of n-th even superperfect number A061652(n). %C A138882 The number of divisors of n-th even superperfect number is equal to A000043(n), then row n has A000043(n) terms. %C A138882 The sum of divisors of n-th even superperfect number is equal to n-th Mersenne prime A000668(n), then n-th row sum is equal to A000668(n). %H A138882 Omar E. Pol, <a href="http://www.polprimos.com">Determinacion geometrica de los numeros primos y perfectos</a>. %e A138882 Triangle begins: %e A138882 1, 2 %e A138882 1, 2, 4 %e A138882 1, 2, 4, 8, 16 %e A138882 1, 2, 4, 8, 16, 32, 64 %e A138882 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 %e A138882 ... %e A138882 ============================================================== %e A138882 ..... Mersenne .............................................. %e A138882 ....... prime ............................................... %e A138882 n ... A000668(n) = Sum of divisors of A061652(n) ............. %e A138882 ============================================================== %e A138882 1 ........ 3 ... = 1+2 %e A138882 2 ........ 7 ... = 1+2+4 %e A138882 3 ....... 31 ... = 1+2+4+8+16 %e A138882 4 ...... 127 ... = 1+2+4+8+16+32+64 %e A138882 5 ..... 8191 ... = 1+2+4+8+16+32+64+128+256+512+1024+2048+4096 %t A138882 Flatten[Divisors[2^(MersennePrimeExponent[Range[7]]-1)]] (* _Harvey P. Dale_, Apr 28 2022 *) %Y A138882 Cf. A000005, A000043, A000203, A000668, A019279, A061652, A133031. %K A138882 nonn,tabf %O A138882 1,2 %A A138882 _Omar E. Pol_, Apr 11 2008