A138893 A generalized Chamberland function.
0, 11, 36, 29, 8, 47, 100, 65, 16, 83, 164, 101, 24, 119, 228, 137, 32, 155, 292, 173, 40, 191, 356, 209, 48, 227, 420, 245, 56, 263, 484, 281, 64, 299, 548, 317, 72, 335, 612, 353, 80, 371, 676, 389, 88, 407, 740, 425, 96, 443, 804, 461, 104, 479, 868, 497
Offset: 0
References
- M. Chamberland, A Continuous Extension of the 3x+1 Problem to the Real Line, Dynamics of Continuous, Discrete and Impulsive Dynamical Systems 2(1996), 495-509.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-3,4,-3,2,-1).
Crossrefs
Cf. A138894.
Programs
-
Mathematica
LinearRecurrence[{2,-3,4,-3,2,-1},{0, 11, 36, 29, 8, 47},56] (* or *) CoefficientList[Series[x(11+14x-10x^2+14x^3+7x^4)/((1-x)^2(1+x^2)^2),{x,0,55}],x] (* James C. McMahon, Jun 24 2025 *)
Formula
G.f.: x(11+14x-10x^2+14x^3+7x^4)/((1-x)^2(1+x^2)^2);
a(n) = 9n+2-(7n+2)cos(Pi*n/2);
a(n) = 6*((n/3)*(cos(Pi*n/4))^2+(2/3)*(4n+1)*(sin(Pi*n/4))^2);
a(4n) = 8n; a(4n+1) = 11+36n; a(4n+2) = 4*(9+16n); a(4n+3) = 29+36n;
Extensions
a(47)-a(55) from James C. McMahon, Jun 24 2025
Comments