This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138897 #48 Aug 19 2025 05:25:53 %S A138897 3,20,420,18144,1330560,148262400,23351328000,4940103168000, %T A138897 1351612226764800,464463110651904000,195848611658219520000, %U A138897 99430833611096064000000,59828953024276660224000000,42103628541617628354969600000,34261827725741345073856512000000,31923961833867229762934538240000000 %N A138897 Ratio of (2n-1)! to number of zeros in upper part of Sylvester matrix of polynomial of degree n with all nonzero coefficients. %C A138897 From _Anthony Hernandez_, Oct 24 2017: (Start) %C A138897 If (n,n-1) is the two-part partition of any odd integer greater than 1 then a(n-1) is the number of permutations of shape (n,n-1). For example, the two-part partition of 11 with shape (n,n-1) is (6,5). Pictorially we can draw this as a standard Young diagram with cells populated by hook lengths: %C A138897 (6,5) = 7 6 5 4 3 1 %C A138897 5 4 3 2 1 %C A138897 and there are a(6-1) = a(5) = 1330560 permutations with shape (6,5). (End) %F A138897 a(n) = (2n - 1)!/(n*(n - 1)). %F A138897 Sum_{n>=2} 1/a(n) = (1 + e^2)/(8*e) = 0.38577015870381094461947640518926542... . - _Stefano Spezia_, Jul 27 2024 %F A138897 Sum_{n>=2} (-1)^n/a(n) = (2*sin(1) - cos(1))/4. - _Amiram Eldar_, Aug 19 2025 %p A138897 A138897:=n->(2*n - 1)!/(n*(n - 1)): seq(A138897(n), n=2..20); # _Wesley Ivan Hurt_, Nov 25 2017 %t A138897 Table[(2 n - 1)!/(n (n - 1)), {n, 2, 20}] %o A138897 (PARI) a(n) = (2*n - 1)!/(n*(n - 1)); \\ _Michel Marcus_, Oct 28 2017 %Y A138897 Cf. A002378, A009445, A007878, A138896, A138898, A000108. %K A138897 nonn %O A138897 2,1 %A A138897 _Artur Jasinski_, Apr 02 2008 %E A138897 More terms from _Michel Marcus_, Oct 28 2017