cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138910 Inverse binomial transform of A138909.

This page as a plain text file.
%I A138910 #10 Oct 30 2017 05:23:50
%S A138910 1,1,3,20,129,1164,12265,151458,2136337,33901640,597761361,
%T A138910 11593851510,245310524041,5622982528188,138803996674057,
%U A138910 3671135646515834,103568483199034785,3104443346427521808,98528857134710517793
%N A138910 Inverse binomial transform of A138909.
%F A138910 O.g.f. satisfies: [x^n] A( x/(1+(n-1)*x) )/(1+(n-1)*x) = n! for n>=0.
%F A138910 E.g.f. satisfies: [x^n] A(x)*exp(-(n-1)*x) = 1 for n>=0.
%F A138910 E.g.f.: (x+1)/(exp(x)-x*exp(2*x)). - _Vladimir Kruchinin_, Nov 07 2016
%F A138910 a(n) ~ n! / LambertW(1)^(n-1). - _Vaclav Kotesovec_, Oct 30 2017
%t A138910 Range[0,19]! CoefficientList[Series[(x + 1) / (Exp[x] - x Exp[2 x]), {x, 0, 19}], x] (* _Vincenzo Librandi_, Nov 07 2016 *)
%o A138910 (PARI) {a(n)=local(A=[1]);for(k=1,n,A=concat(A,0); A[k+1]=k!-polcoeff(subst(Ser(A),x,x/(1+(k-1)*x+x*O(x^k)))/(1+(k-1)*x),k));A[n+1]}
%Y A138910 Cf. A138909.
%K A138910 nonn
%O A138910 0,3
%A A138910 _Paul D. Hanna_, Apr 05 2008