A138977 Number of 2 X n matrices containing a 1 in the top left entry, all entries are integer values and adjacent entries differ by at most 1.
3, 19, 121, 771, 4913, 31307, 199497, 1271251, 8100769, 51620379, 328939577, 2096095523, 13356910353, 85113990379, 542370291241, 3456136077171, 22023471375233, 140339755317947, 894284401724697, 5698631790801091, 36313284928708849, 231398467337757579
Offset: 1
Examples
a(1) = 3: |1|1|1| |0|1|2| a(2) = 19: |10|11|12| |10|11|12| |10|11|12| |0*|0*|01| |1*|1*|1*| |21|2*|2*| (3) (2)(1) (2) (3)(2) (1) (2)(3), total 19.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Michael Han, Sycamore Herlihy, Kirsti Kuenzel, Daniel Martin, and Rachel Schmidt, The number of independent sets in bipartite graphs and benzenoids, arXiv:2311.15334 [math.CO], 2023. See p. 13.
- Index entries for linear recurrences with constant coefficients, signature (7,-4).
Programs
-
Maple
a:= LREtools[REtoproc](a(n+3)=7*a(n+2)-4*a(n+1),a(n),{a(0)=0,a(1)=3,a(2)=19}): seq(a(n),n=1..100); # Robert Israel, Sep 02 2014
-
Mathematica
LinearRecurrence[{7, -4}, {3, 19}, 22] (* Jean-François Alcover, Apr 30 2019 *)
-
PARI
Vec(x*(3 - 2*x) / (1 - 7*x + 4*x^2) + O(x^30)) \\ Colin Barker, Jan 31 2018
Formula
a(n)=b(n)+c(n), where b(1)=2, c(1)=1, b(n+1)=4*b(n)+4*c(n), c(n+1)=2*b(n)+3*c(n).
G.f.: x*(3 - 2*x) / (1 - 7*x + 4*x^2). - N. J. A. Sloane, Apr 06 2008
a(n+2) = 7*a(n+1) - 4*a(n) for n >= 2. - Robert Israel, Sep 02 2014
a(n) = (2^(-2-n)*((7-sqrt(33))^n*(-5+sqrt(33)) + (5+sqrt(33))*(7+sqrt(33))^n)) / sqrt(33). - Colin Barker, Jan 31 2018
Comments