cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138990 a(n) = Frobenius number for 4 successive primes = F[p(n), p(n+1), p(n+2), p(n+3)].

This page as a plain text file.
%I A138990 #19 Jan 27 2023 17:11:56
%S A138990 1,4,9,23,42,67,83,101,125,199,262,335,367,393,492,593,704,807,873,
%T A138990 990,817,950,1101,1353,2039,2624,2371,1494,1431,1640,2927,2368,2875,
%U A138990 2667,3570,3348,3625,3918,4531,3816,4831,4543,9357,4819,4131,6611,5735,10483
%N A138990 a(n) = Frobenius number for 4 successive primes = F[p(n), p(n+1), p(n+2), p(n+3)].
%H A138990 Harvey P. Dale, <a href="/A138990/b138990.txt">Table of n, a(n) for n = 1..1000</a>
%e A138990 a(3)=23 because 23 is the largest number k such that the equation 7*x_1 + 11*x_2 + 13*x_3 + 17*x + 4 = k has no solution for any nonnegative x_i (in other words, for every k > 23 there exist one or more solutions).
%t A138990 Table[FrobeniusNumber[{Prime[n],Prime[n + 1], Prime[n + 2], Prime[n + 3]}], {n, 1, 100}]
%t A138990 FrobeniusNumber/@Partition[Prime[Range[60]],4,1] (* _Harvey P. Dale_, Nov 23 2014 *)
%Y A138990 Frobenius numbers for k successive primes: A037165 (k=2), A138989 (k=3), this sequence (k=4), A138991 (k=5), A138992 (k=6), A138993 (k=7), A138994 (k=8).
%Y A138990 Cf. A028387, A079326, A138985, A138986, A138987, A138988.
%K A138990 nonn
%O A138990 1,2
%A A138990 _Artur Jasinski_, Apr 05 2008
%E A138990 Definition corrected by _Harvey P. Dale_, Aug 15 2014