cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138991 a(n) = Frobenius number for 5 successive primes = F[p(n), p(n+1), p(n+2), p(n+3), p(n+4)].

This page as a plain text file.
%I A138991 #19 Jan 27 2023 13:35:35
%S A138991 1,4,9,23,31,54,66,101,125,143,200,261,285,307,398,434,588,563,672,
%T A138991 708,659,717,935,1078,1748,1816,1135,1173,1104,1277,1911,1975,2188,
%U A138991 2111,2680,2593,2683,3266,2861,3297,3757,3996,4198,3275,2953,3457,4668,6688
%N A138991 a(n) = Frobenius number for 5 successive primes = F[p(n), p(n+1), p(n+2), p(n+3), p(n+4)].
%e A138991 a(3)=23 because 23 is the largest number k such that the equation 7*x_1 + 11*x_2 + 13*x_3 + 17*x_4 + 19*x_5 = k has no solution for any nonnegative x_i (in other words, for every k > 23 there exist one or more solutions).
%t A138991 Table[FrobeniusNumber[{Prime[n],Prime[n + 1], Prime[n + 2], Prime[n + 3], Prime[n + 4]}], {n, 1, 100}]
%t A138991 FrobeniusNumber/@Partition[Prime[Range[80]],5,1] (* _Harvey P. Dale_, Aug 15 2014 *)
%Y A138991 Frobenius numbers for k successive primes: A037165 (k=2), A138989 (k=3), A138990 (k=4), this sequence (k=5), A138992 (k=6), A138993 (k=7), A138994 (k=8).
%Y A138991 Cf. A028387, A079326, A138985, A138986, A138987, A138988.
%K A138991 nonn
%O A138991 1,2
%A A138991 _Artur Jasinski_, Apr 05 2008