This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139000 #34 Feb 16 2025 08:33:08 %S A139000 0,1,1,5,257,227081,5180893281,4280906663314189, %T A139000 171185545597850136406017,426885502327596067385688208587793, %U A139000 83152665259106642682190066734067859360190625,1549180370826247785860196691818235616463808908569519107349 %N A139000 a(n) = discriminant of n-th Bell polynomial. %H A139000 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>. %e A139000 a(4) = 257 because discriminant of the 4th Bell polynomial x + 7 x^2 + 6 x^3 + x^4 is 257. %p A139000 seq(discrim(BellB(n, x), x), n = 0..12); # _Peter Luschny_, Oct 08 2023 %t A139000 Table[Discriminant[BellB[n, x], x], {n, 0, 10}] (* _Vaclav Kotesovec_, Oct 08 2023 *) %o A139000 (PARI) a(n) = poldisc(Pol(vector(n+1, k, stirling(n, k, 2)))); \\ _Michel Marcus_, Oct 07 2023 %Y A139000 Cf. A106800. %K A139000 nonn %O A139000 0,4 %A A139000 _Artur Jasinski_, Apr 05 2008 %E A139000 Offset set to 0 by _Peter Luschny_, Oct 08 2023