cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A139082 a(n) = (largest power of a prime dividing n) * (largest power of a prime dividing (n+1)).

Original entry on oeis.org

2, 6, 12, 20, 15, 21, 56, 72, 45, 55, 44, 52, 91, 35, 80, 272, 153, 171, 95, 35, 77, 253, 184, 200, 325, 351, 189, 203, 145, 155, 992, 352, 187, 119, 63, 333, 703, 247, 104, 328, 287, 301, 473, 99, 207, 1081, 752, 784, 1225, 425, 221, 689, 1431, 297, 88, 152, 551
Offset: 1

Views

Author

Leroy Quet, Apr 07 2008

Keywords

Comments

The largest prime-power dividing 12 is 4. The largest prime power dividing 13 is 13. So a(12) = 4*13 = 52.

Crossrefs

Programs

  • Maple
    isA000961 := proc(n) if nops(ifactors(n)[2]) =1 then true ; else false ; fi ; end: A034699 := proc(n) local dvs,d ; if n = 1 then RETURN(1) ; fi ; dvs := sort(convert(numtheory[divisors](n),list),`>`) ; for d in dvs do if isA000961(d) then RETURN(d) ; fi ; od: RETURN(0) ; end: A139082 := proc(n) A034699(n)*A034699(n+1) ; end: seq(A139082(n),n=1..100) ; # R. J. Mathar, Apr 16 2008
  • Mathematica
    Times @@ # & /@ Partition[Array[Max@ Map[Power @@ # &, FactorInteger@ #] &, 58], 2, 1] (* Michael De Vlieger, Oct 22 2017 *)

Formula

a(n) = A034699(n)*A034699(n+1). - R. J. Mathar, Apr 16 2008

Extensions

More terms from R. J. Mathar, Apr 16 2008

A139083 a(n) = (smallest prime-power among the largest powers of each prime dividing n) + (smallest prime-power among the largest powers of each prime dividing (n+1)).

Original entry on oeis.org

3, 5, 7, 9, 7, 9, 15, 17, 11, 13, 14, 16, 15, 5, 19, 33, 19, 21, 23, 7, 5, 25, 26, 28, 27, 29, 31, 33, 31, 33, 63, 35, 5, 7, 9, 41, 39, 5, 8, 46, 43, 45, 47, 9, 7, 49, 50, 52, 51, 5, 7, 57, 55, 7, 12, 10, 5, 61, 62, 64, 63, 9, 71, 69, 7, 69, 71, 7, 5, 73, 79, 81, 75, 5, 7, 11, 9, 81
Offset: 1

Views

Author

Leroy Quet, Apr 07 2008

Keywords

Comments

The largest powers of each prime dividing 44 are 2^2 and 11^1. The least of these is 2^2 =4. The largest powers of each prime dividing 45 are 3^2 and 5^1. The least of these is 5^1 = 5. So a(44) = 4 + 5 = 9.

Crossrefs

Programs

  • Mathematica
    f[{a_,b_}]:=a^b;a[n_]:=Min[f/@FactorInteger[n]]+Min[f/@FactorInteger[n+1]];Array[a,78] (* James C. McMahon, Jun 28 2025 *)
  • PARI
    minpp(n)=local(m,r,pp);if(n==1,1,m=factor(n);r=m[1,1]^m[1,2];for(i=2,matsize(m)[1],pp=m[i,1]^m[i,2];if(pp
    				

Formula

a(n) = A034684(n) + A034684(n+1). [Franklin T. Adams-Watters, Apr 09 2009]

Extensions

More terms from Franklin T. Adams-Watters, Apr 09 2009
Showing 1-2 of 2 results.