cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139102 Numbers whose binary representation shows the distribution of prime numbers up to the n-th prime minus 1, using "0" for primes and "1" for nonprime numbers.

This page as a plain text file.
%I A139102 #25 Jan 10 2022 06:52:42
%S A139102 1,2,9,37,599,2397,38359,153437,2454999,157119967,628479869,
%T A139102 40222711647,643563386359,2574253545437,41188056726999,
%U A139102 2636035630527967,168706280353789919,674825121415159677,43188807770570219359,691020924329123509751,2764083697316494039005
%N A139102 Numbers whose binary representation shows the distribution of prime numbers up to the n-th prime minus 1, using "0" for primes and "1" for nonprime numbers.
%C A139102 a(n) is the decimal representation of A139101(n) interpreted as binary number.
%H A139102 Michael S. Branicky, <a href="/A139102/b139102.txt">Table of n, a(n) for n = 1..468</a>
%H A139102 Omar E. Pol, <a href="http://polprimos.com">Determinacion geometrica de los numeros primos y perfectos</a>.
%F A139102 a(n) = A139104(n)/2.
%e A139102 a(4)=37 because 37 written in base 2 is 100101 and the string "100101" shows the distribution of prime numbers up to the 4th prime minus 1, using "0" for primes and "1" for nonprime numbers.
%p A139102 A139101 := proc(n) option remember ; local a,p; if n = 1 then RETURN(1); else a := 10*A139101(n-1) ; for p from ithprime(n-1)+1 to ithprime(n)-1 do a := 10*a+1 ; od: fi ; RETURN(a) ; end: # _R. J. Mathar_, Apr 25 2008
%p A139102 bin2dec := proc(n) local nshft ; nshft := convert(n,base,10) ; add(op(i,nshft)*2^(i-1),i=1..nops(nshft) ) ; end: # _R. J. Mathar_, Apr 25 2008
%p A139102 A139102 := proc(n) bin2dec(A139101(n)) ; end: # _R. J. Mathar_, Apr 25 2008
%p A139102 seq(A139102(n),n=1..35) ; # _R. J. Mathar_, Apr 25 2008
%t A139102 Table[ sum = 0; For[i = 1, i <= Prime[n] - 1 , i++, sum = sum*2;
%t A139102 If[! PrimeQ[i], sum++]]; sum, {n, 1, 25}] (* _Robert Price_, Apr 03 2019 *)
%o A139102 (PARI) a(n) = fromdigits(vector(prime(n)-1, k, !isprime(k)), 2); \\ _Michel Marcus_, Apr 04 2019
%o A139102 (Python)
%o A139102 from sympy import isprime, prime
%o A139102 def a(n):
%o A139102     return int("".join(str(1-isprime(i)) for i in range(1, prime(n))), 2)
%o A139102 print([a(n) for n in range(1, 22)]) # _Michael S. Branicky_, Jan 10 2022
%o A139102 (Python) # faster version for initial segment of sequence
%o A139102 from sympy import isprime
%o A139102 from itertools import count, islice
%o A139102 def agen(): # generator of terms
%o A139102     an = 0
%o A139102     for k in count(1):
%o A139102         an = 2 * an + int(not isprime(k))
%o A139102         if isprime(k+1):
%o A139102             yield an
%o A139102 print(list(islice(agen(), 21))) # _Michael S. Branicky_, Jan 10 2022
%Y A139102 Subset of A118255.
%Y A139102 Cf. A000040, A018252, A139101, A139103, A139104, A139119, A139120, A139122.
%K A139102 nonn,base
%O A139102 1,2
%A A139102 _Omar E. Pol_, Apr 08 2008
%E A139102 More terms from _R. J. Mathar_, Apr 25 2008
%E A139102 a(20)-a(21) from _Robert Price_, Apr 03 2019