This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139122 #15 Jun 15 2022 13:22:36 %S A139122 2,37,599,153437,628479869 %N A139122 Primes whose binary representation shows the distribution of prime numbers up to some prime minus 1, using "0" for primes and "1" for nonprime numbers. %C A139122 Primes in A139102. %C A139122 a(6) > 10^14632 if it exists (no further primes in first 5000 terms of A139102). - _Michael S. Branicky_, Jan 25 2022 %t A139122 Select[Table[ sum = 0; For[i = 1, i <= Prime[n] - 1 , i++, sum = sum*2; If[! PrimeQ[i], sum++]]; sum, {n, 1, 1000}], PrimeQ[#] &] (* _Robert Price_, Apr 03 2019 *) %t A139122 Module[{nn=500,p,x},p=Table[If[PrimeQ[n],0,1],{n,nn}];x=SequencePosition[p,{1,0}][[All,1]];Join[{2},Select[Table[FromDigits[Take[p,k],2],{k,x}],PrimeQ]]] (* _Harvey P. Dale_, Jun 15 2022 *) %o A139122 (PARI) f(n) = fromdigits(vector(prime(n)-1, k, !isprime(k)), 2); \\ A139102 %o A139122 lista(nn) = for (n=1, nn, if (isprime(p=f(n)), print1(p, ", "))); %o A139122 (Python) # uses agen() in A139102 %o A139122 from sympy import isprime %o A139122 print(list(islice(filter(isprime, agen()), 5))) # _Michael S. Branicky_, Jan 25 2022 %Y A139122 Cf. A118255, A118256, A118257, A139101, A139102, A139103, A139104, A139119, A139120. %K A139122 nonn,base,more %O A139122 1,1 %A A139122 _Omar E. Pol_, Apr 11 2008 %E A139122 a(5) from _Robert Price_, Apr 03 2019