This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139247 #7 Sep 27 2024 05:42:37 %S A139247 3,6,7,14,28,31,62,124,248,496,127,254,508,1016,2032,4064,8128,8191, %T A139247 16382,32764,65528,131056,262112,524224,1048448,2096896,4193792, %U A139247 8387584,16775168,33550336,131071,262142,524284,1048568,2097136,4193792 %N A139247 Triangle read by rows: row n lists the divisors of n-th perfect number A000396(n) that are multiples of n-th Mersenne prime A000668(n). %C A139247 Also, row n list the divisors of n-th perfect number that are not powers of 2. %C A139247 First term of row n is the n-th Mersenne prime A000668(n). Last term of row n is the n-th perfect number A000396(n). Row n has A000043(n) terms. The sum of row n is equal to A133049(n), the square of n-th Mersenne prime A000668(n). %H A139247 Omar E. Pol, <a href="http://www.polprimos.com">Determinacion geometrica de los numeros primos y perfectos</a>. %e A139247 Triangle begins: %e A139247 3, 6, %e A139247 7, 14, 28 %e A139247 31, 62, 124, 248, 496 %e A139247 127, 254, 508, 1016, 2032, 4064, 8128 %e A139247 ... %e A139247 ========================================================== %e A139247 Row .... First term ..... Last term ....... Row sum ...... %e A139247 n ..... (A000668(n)) ... (A000396(n)) ... (A000668(n)^2) . %e A139247 ========================================================== %e A139247 1 ............ 3 .............. 6 ......... 3^2 = 9 %e A139247 2 ............ 7 ............. 28 ......... 7^2 = 49 %e A139247 3 ........... 31 ............ 496 ........ 31^2 = 961 %e A139247 4 .......... 127 ........... 8128 ....... 127^2 = 16129 %e A139247 5 ......... 8191 ....... 33550336 ...... 8191^2 = 67092481 %Y A139247 Cf. A000043, A000396, A000668, A018254, A018487, A133024, A133025, A133031, A133049, A135652, A135653, A135654, A135655. %K A139247 nonn,tabf %O A139247 1,1 %A A139247 _Omar E. Pol_, Apr 22 2008