A139306 Ultraperfect numbers: a(n) = 2^(2*p - 1), where p is A000043(n).
8, 32, 512, 8192, 33554432, 8589934592, 137438953472, 2305843009213693952, 2658455991569831745807614120560689152, 191561942608236107294793378393788647952342390272950272
Offset: 1
Keywords
Examples
a(5) = 33554432 because A000043(5) = 13 and 2^(2*13 - 1) = 2^25 = 33554432. Also, if there are no odd perfect and odd superperfect numbers then we can write a(5) = A000396(5) + A019279(5) = A000396(5) + A061652(5) = 33554432.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..15
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
Crossrefs
Programs
-
Mathematica
2^(2 * MersennePrimeExponent[Range[10]] - 1) (* Amiram Eldar, Oct 17 2024 *)
Formula
a(n) = 2^(2*A000043(n) - 1). Also, a(n) = 2^A133033(n), if there are no odd perfect numbers. Also, a(n) = A000396(n) + A019279(n), if there are no odd perfect and odd superperfect numbers. Also, a(n) = A000396(n) + A061652(n), if there are no odd perfect numbers, then we can write: perfect number A000396(n) = a(n) - A061652(n).
Comments