A139321 First occurrence of n in A068307: least number k such that the number of decomposition of k into the sum of three primes is n.
1, 6, 9, 15, 17, 21, 31, 27, 35, 33, 39, 41, 45, 47, 55, 51, 53, 57, 242, 63, 67, 65, 71, 476, 79, 81, 578, 85, 77, 83, 99, 572, 512, 89, 97, 95, 103, 111, 101, 692, 1040, 632, 115, 107, 782, 129, 121, 113, 902, 141, 119, 842, 992, 125, 133, 147, 1520, 131, 159, 145
Offset: 0
Keywords
Links
- Robert G. Wilson v and T. D. Noe, Table of n, a(n) for n = 0..2500
Programs
-
Mathematica
f[n_] := Block[{c = 0, lmt = PrimePi@ Floor[n/2], p, q}, Do[p = Prime@ i; q = Prime@ j; r = n - p - q; If[ PrimeQ@ r && r >= p, c++ ], {i, lmt}, {j, i}]; c]; t = Table[0, {1000}]; Do[a = f@n; If[t[[a]] == 0, t[[a]] = n; Print[{a, n}]], {n, 10^6}]
Comments