cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139339 Decimal expansion of the square root of the golden ratio.

This page as a plain text file.
%I A139339 #100 Jul 14 2025 19:35:35
%S A139339 1,2,7,2,0,1,9,6,4,9,5,1,4,0,6,8,9,6,4,2,5,2,4,2,2,4,6,1,7,3,7,4,9,1,
%T A139339 4,9,1,7,1,5,6,0,8,0,4,1,8,4,0,0,9,6,2,4,8,6,1,6,6,4,0,3,8,2,5,3,9,2,
%U A139339 9,7,5,7,5,5,3,6,0,6,8,0,1,1,8,3,0,3,8,4,2,1,4,9,8,8,4,6,0,2,5,8,5,3,8,5,1
%N A139339 Decimal expansion of the square root of the golden ratio.
%C A139339 The hyperbolas x^2 - y^2 = 1 and xy = 1 meet at (c, 1/c) and (-c, -1/c), where c = sqrt(golden ratio); see the Mathematica program for a graph. - _Clark Kimberling_, Oct 19 2011
%C A139339 An algebraic integer of degree 4. Minimal polynomial: x^4 - x^2 - 1. - _Charles R Greathouse IV_, Jan 07 2013
%C A139339 Also the limiting value of the ratio of the slopes of the tangents drawn to the function y=sqrt(x) from the abscissa F(n) points (where F(n)=A000045(n) are the Fibonacci numbers and n > 0). - _Burak Muslu_, Apr 04 2021
%C A139339 The length of the base of the isosceles triangle of smallest perimeter which circumscribes a unit-diameter semicircle (DeTemple, 1992). - _Amiram Eldar_, Jan 22 2022
%C A139339 The unique real solution to arcsec(x) = arccot(x). - _Wolfe Padawer_, Apr 14 2023
%D A139339 B. Muslu, Sayılar ve Bağlantılar 2, Luna, 2021, pages 45-48.
%H A139339 Chai Wah Wu, <a href="/A139339/b139339.txt">Table of n, a(n) for n = 1..10000</a>
%H A139339 Mohammad K. Azarian, <a href="https://doi.org/10.35834/1998/1003176">Problem 123</a>, Missouri Journal of Mathematical Sciences, Vol. 10, No. 3 (Fall 1998), p. 176. <a href="https://doi.org/10.35834/2000/1201050">Solution</a> published in Vol. 12, No. 1 (Winter 2000), pp. 61-62.
%H A139339 Duane W. DeTemple, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/30-3/detemple.pdf">The Triangle of Smallest Perimeter which Circumscribes a Semicircle</a>, The Fibonacci Quarterly, Vol. 30, No. 3 (1992), p. 274.
%H A139339 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>.
%F A139339 Equals sqrt((1 + sqrt(5))/2).
%F A139339 Equals 1/sqrt(A094214). - _Burak Muslu_, Apr 04 2021
%F A139339 From _Amiram Eldar_, Feb 07 2022: (Start)
%F A139339 Equals 1/A197762.
%F A139339 Equals tan(arccos(1/phi)).
%F A139339 Equals cot(arcsin(1/phi)). (End)
%F A139339 From _Gerry Martens_, Jul 30 2023: (Start)
%F A139339 Equals 5^(1/4)*cos(arctan(2)/2).
%F A139339 Equals Re(sqrt(1+2*i)) (the imaginary part is A197762). (End)
%e A139339 1.2720196495140689642524224617374914917156080418400...
%p A139339 Digits:=100: evalf(sqrt((1+sqrt(5))/2)); # _Muniru A Asiru_, Sep 11 2018
%t A139339 N[Sqrt[GoldenRatio], 100]
%t A139339 FindRoot[x*Sqrt[-1 + x^2] == 1, {x, 1.2, 1.3}, WorkingPrecision -> 110]
%t A139339 Plot[{Sqrt[-1 + x^2], 1/x}, {x, 0, 3}] (* _Clark Kimberling_, Oct 19 2011 *)
%o A139339 (PARI) sqrt((1+sqrt(5))/2) \\ _Charles R Greathouse IV_, Jan 07 2013
%o A139339 (PARI) a(n) = sqrtint(10^(2*n-2)*quadgen(5))%10; \\ _Chittaranjan Pardeshi_, Aug 24 2024
%Y A139339 Cf. A000045, A001622, A094214, A104457, A098317, A002390; A197762 (related intersection of hyperbolas).
%K A139339 nonn,cons,easy
%O A139339 1,2
%A A139339 _Mohammad K. Azarian_, Apr 14 2008