This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139341 #14 Feb 08 2022 02:38:57 %S A139341 5,0,4,3,1,6,5,6,4,3,3,6,0,0,2,8,6,5,1,3,1,1,8,8,2,1,8,9,2,8,5,4,2,4, %T A139341 7,1,0,3,2,3,5,9,0,1,7,5,4,1,3,8,4,6,3,6,0,3,0,2,0,0,0,1,9,6,7,7,7,7, %U A139341 8,6,9,6,0,9,1,0,8,9,2,9,4,2,8,4,1,5,1,8,7,8,2,1,8,4,3,3,8,4,6,5,3,3,0,5,4 %N A139341 Decimal expansion of e^((1+sqrt(5))/2). %C A139341 By the Lindemann-Weierstrass theorem, this constant is transcendental. - _Charles R Greathouse IV_, May 13 2019 %H A139341 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %F A139341 From _Amiram Eldar_, Feb 08 2022: (Start) %F A139341 Equals exp(A001622). %F A139341 Equals 1/A139342. (End) %e A139341 5.04316564336002865131188218928542471032359017541384... %p A139341 phi := (1+sqrt(5))/2 ; evalf(exp(phi)) ; # _R. J. Mathar_, Oct 16 2015 %t A139341 RealDigits[Exp[GoldenRatio], 10, 100][[1]] (* _Amiram Eldar_, Feb 08 2022 *) %o A139341 (PARI) exp((sqrt(5)+1)/2) \\ _Charles R Greathouse IV_, May 13 2019 %Y A139341 Cf. A001622, A094214, A104457, A098317, A002390, A139339, A139340, A139342. %K A139341 nonn,cons %O A139341 1,1 %A A139341 _Mohammad K. Azarian_, Apr 14 2008