cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139477 Number of binary digits in A001109(n).

This page as a plain text file.
%I A139477 #25 Nov 24 2024 01:53:08
%S A139477 1,1,3,6,8,11,13,16,18,21,23,26,29,31,34,36,39,41,44,46,49,51,54,56,
%T A139477 59,62,64,67,69,72,74,77,79,82,84,87,90,92,95,97,100,102,105,107,110,
%U A139477 112,115,118,120,123,125,128,130,133,135,138,140,143,146,148,151,153,156,158,161,163,166,168
%N A139477 Number of binary digits in A001109(n).
%H A139477 Robert Israel, <a href="/A139477/b139477.txt">Table of n, a(n) for n = 0..10000</a>
%F A139477 a(n) = A070939(A001109(n)). - _Michel Marcus_, Nov 02 2013
%p A139477 a[0]:= 0: a[1]:= 1: R[0]:= 1: R[1]:= 1:
%p A139477 for n from 2 to 100 do
%p A139477    a[n]:=  6*a[n-1] - a[n-2];
%p A139477    R[n]:= ilog2(a[n])+1;
%p A139477 od:
%p A139477 seq(R[i],i=0..100); # _Robert Israel_, Nov 23 2024
%t A139477 a = {}; Do[k = Length[IntegerDigits[Expand[((2*Sqrt[2] + 3)^(n) - (3 - 2*Sqrt[2])^(n))/(4*Sqrt[2])], 2]]; Print[k]; AppendTo[a, k], {n, 1, 50}]; a
%t A139477 Rest[IntegerLength[#,2]&/@LinearRecurrence[{6,-1},{0,1},60]] (* _Harvey P. Dale_, Feb 11 2015 *)
%Y A139477 Cf. A001109, A139473, A139474, A139475, A139476, A139478.
%K A139477 base,nonn
%O A139477 0,3
%A A139477 _Artur Jasinski_, Apr 22 2008
%E A139477 Incorrect link to index entries for linear recurrences with constant coefficients removed by _Colin Barker_, Oct 13 2015
%E A139477 a(0) = 1 prepended and more terms by _Robert Israel_, Nov 23 2024