cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139488 Binomial transform of [1, 2, 3, 4, 0, 0, 0, ...].

Original entry on oeis.org

1, 3, 8, 20, 43, 81, 138, 218, 325, 463, 636, 848, 1103, 1405, 1758, 2166, 2633, 3163, 3760, 4428, 5171, 5993, 6898, 7890, 8973, 10151, 11428, 12808, 14295, 15893, 17606, 19438, 21393, 23475, 25688, 28036, 30523, 33153, 35930, 38858, 41941, 45183
Offset: 0

Views

Author

Gary W. Adamson, Apr 23 2008

Keywords

Examples

			a(5) = 43 = (1, 4, 6, 4, 1) dot (1, 2, 3, 4, 0) = (1 + 8, + 18 + 16 + 0).
		

Crossrefs

Programs

  • Maple
    a:=proc(n) options operator, arrow: (2/3)*n^3-(1/2)*n^2+(11/6)*n+1 end proc: seq(a(n),n=0..35); # Emeric Deutsch, Apr 30 2008
  • Mathematica
    f[n_] := Plus @@ (Table[ Binomial[n - 1, i], {i, 0, n - 1}] PadRight[{1, 2, 3, 4}, n]); Array[f, 43] (* Robert G. Wilson v, Apr 24 2008 *)

Formula

Equals A007318 * [1, 2, 3, 4, 0, 0, 0, ...].
a(n) = (4n^3 - 3n^2 + 11n + 6)/6. - Emeric Deutsch, Apr 30 2008
G.f.: (1 - x + 2*x^2 + 2*x^3)/(1-x)^4. - Colin Barker, Feb 01 2012

Extensions

More terms from Robert G. Wilson v and Emeric Deutsch, Apr 24 2008