This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139524 #10 May 03 2021 01:26:02 %S A139524 3,4,2,6,4,2,10,6,6,2,18,8,12,8,2,34,10,20,20,10,2,66,12,30,40,30,12, %T A139524 2,130,14,42,70,70,42,14,2,258,16,56,112,140,112,56,16,2,514,18,72, %U A139524 168,252,252,168,72,18,2,1026,20,90,240,420,504,420,240,90,20,2 %N A139524 Triangle T(n,k) read by rows: the coefficient of [x^k] of the polynomial 2*(x+1)^n + 2^n in row n, column k. %D A139524 Advanced Number Theory, Harvey Cohn, Dover Books, 1963, Pages 88-89 %H A139524 G. C. Greubel, <a href="/A139524/b139524.txt">Rows n = 0..50 of the triangle, flattened</a> %F A139524 Sum_{k=0..n} T(n,k) = 3*2^n = A007283(n). %F A139524 From _R. J. Mathar_, Sep 12 2013: (Start) %F A139524 T(n,0) = 2 + 2^n = A052548(n). %F A139524 T(n,k) = 2*binomial(n,k) = A028326(n,k) if k>0. (End) %e A139524 Triangle begins as: %e A139524 3; %e A139524 4, 2; %e A139524 6, 4, 2; %e A139524 10, 6, 6, 2; %e A139524 18, 8, 12, 8, 2; %e A139524 34, 10, 20, 20, 10, 2; %e A139524 66, 12, 30, 40, 30, 12, 2; %e A139524 130, 14, 42, 70, 70, 42, 14, 2; %e A139524 258, 16, 56, 112, 140, 112, 56, 16, 2; %e A139524 514, 18, 72, 168, 252, 252, 168, 72, 18, 2; %e A139524 1026, 20, 90, 240, 420, 504, 420, 240, 90, 20, 2; %t A139524 (* First program *) %t A139524 T[n_, k_]:= SeriesCoefficient[Series[2*(1+x)^n + 2^n, {x, 0, 20}], k]; %t A139524 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, May 02 2021 *) %t A139524 (* Second program *) %t A139524 T[n_, k_]:= T[n, k] = If[k==0, 2 + 2^n, 2*Binomial[n, k]]; %t A139524 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, May 02 2021 *) %o A139524 (Magma) %o A139524 A139524:= func< n,k | k eq 0 select 2+2^n else 2*Binomial(n,k) >; %o A139524 [A139524(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, May 02 2021 %o A139524 (Sage) %o A139524 def A139524(n,k): return 2+2^n if (k==0) else 2*binomial(n,k) %o A139524 flatten([[A139524(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, May 02 2021 %Y A139524 Cf. A007283, A028326, A052548. %K A139524 nonn,tabl,easy,less %O A139524 0,1 %A A139524 _Roger L. Bagula_ and _Gary W. Adamson_, Jun 09 2008