A139556 a(n) = sum of the prime-powers (including 1) that each are <= n and are coprime to n.
1, 1, 3, 4, 10, 6, 15, 16, 27, 20, 39, 24, 50, 42, 46, 49, 79, 54, 96, 80, 96, 74, 115, 96, 133, 120, 151, 153, 190, 120, 219, 220, 232, 203, 245, 181, 282, 238, 267, 227, 319, 252, 360, 330, 334, 318, 403, 349, 443, 407, 443, 424, 499, 451, 511, 434, 494, 461
Offset: 1
Keywords
Examples
All the positive integers <= 21 that are coprime to 21 are 1,2,4,5,8,10,11,13,16,17,19,20. Of these integers, only 1,2,4,5,8,11,13,16,17,19 are prime-powers. The sum of these prime-powers is 1+2+4+5+8+11+13+16+17+19 = 96; so a(21) = 96.
Links
- Robert Price, Table of n, a(n) for n = 1..5000
Programs
-
Maple
isA000961 := proc(n) if n = 1 or isprime(n) then true; else RETURN(nops(ifactors(n)[2]) =1) ; fi ; end: A139556 := proc(n) local a,i; a := 0 ; for i from 1 to n do if isA000961(i) and gcd(i,n) = 1 then a := a+i ; fi ; od: a ; end: seq(A139556(n),n=1..100) ; # R. J. Mathar, May 12 2008
-
Mathematica
f[n_] := Plus @@ Select[Range@ n, Length@ FactorInteger@ # == 1 == GCD[n, # ] &]; Array[f, 58] (* Robert G. Wilson v *)
Extensions
More terms from R. J. Mathar, May 12 2008