cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139557 a(1)=2. For n>=2, a(n) = smallest integer > a(n-1) that is not coprime to n but is coprime to (n+1).

Original entry on oeis.org

2, 4, 9, 12, 25, 26, 35, 38, 39, 40, 55, 56, 65, 68, 69, 70, 85, 86, 133, 134, 135, 136, 161, 162, 165, 166, 171, 172, 203, 204, 217, 218, 219, 221, 235, 236, 259, 262, 267, 268, 451, 452, 559, 562, 565, 566, 611, 612, 623, 625, 627, 628, 689, 692, 695, 698, 699
Offset: 1

Views

Author

Leroy Quet, Apr 27 2008

Keywords

Comments

a(10^k): 2, 40, 1264, 36892, 1067320, 34896904, 1108981540, ... and a(2^k): 2, 4, 12, 38, 70, 218, 796, 2162, 4286, 11714, 37782, 120362, 298796, 843674, 2571822, 6451768, 19197744, 50986622, 143390054, 439876796, 1183838920, ..., . - Robert G. Wilson v
Least term k such that there are just n consecutive terms: 2, 25, 38, 133, 1172, 25141, 19378160, 768173, 196130, 1929805, 15078410, 7017361, ???, 66719843, ..., . - Robert G. Wilson v

Crossrefs

Cf. A139558.

Programs

  • Maple
    A139557 := proc(n) option remember ; local a,i; if n = 1 then RETURN(2) ; fi ; for a from A139557(n-1)+1 do if gcd(a,n+1) = 1 and gcd(a,n) <> 1 then RETURN(a) ; fi ; od: a ; end: seq(A139557(n),n=1..100) ; # R. J. Mathar, May 20 2008
  • Mathematica
    f[1] = 2; f[n_] := f[n] = Block[{k = f[n - 1] + 1}, While[ GCD[n, k] == 1 || GCD[n + 1, k] > 1, k++ ]; k]; Array[f, 57] (* Robert G. Wilson v *)

Extensions

More terms from R. J. Mathar and Robert G. Wilson v, May 20 2008