cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139589 Fibonacci numbers with Fibonacci number of divisors.

Original entry on oeis.org

1, 1, 2, 3, 5, 13, 89, 233, 610, 987, 1597, 10946, 28657, 514229, 3524578, 9227465, 24157817, 39088169, 63245986, 433494437, 1836311903, 2971215073, 7778742049, 20365011074, 591286729879, 4052739537881, 17167680177565, 44945570212853
Offset: 1

Views

Author

Omar E. Pol, May 09 2008

Keywords

Comments

A000005(a(n)) is a Fibonacci number.
For the terms shown here (in the Data section) the number of divisors is 1 or 2 or 8. - Emeric Deutsch, May 12 2008
Up to n = 104 the number of divisors is still 1, 2 or 8. - Amiram Eldar, Oct 15 2019

Crossrefs

Programs

  • Maple
    A000045 := proc(n) option remember ; coeftayl( x/(1-x-x^2),x=0,n) ; end: isA000045 := proc(n) local a; for a from 0 do if A000045(a) > n then RETURN(false) ; elif A000045(a)=n then RETURN(true) ; fi ; od: end: A000005 := proc(n) numtheory[tau](n) ; end: isA139589 := proc(n) RETURN(isA000045(n) and isA000045(A000005(n))) ; end: for i from 1 to 130 do a000045 := A000045(i) ; if isA139589(a000045) then printf("%d,",a000045) ; fi ; od: # R. J. Mathar, May 11 2008
    with(combinat): with(numtheory): F:={seq(fibonacci(k),k=1..100)}: a:=proc(n) if member(tau(fibonacci(n)),F)=true then fibonacci(n) else end if end proc: seq(a(n),n=1..70); # Emeric Deutsch, May 12 2008
  • Mathematica
    With[{s = Array[Fibonacci, 80]}, Select[s, ! FreeQ[s, DivisorSigma[0, #]] &]] (* Michael De Vlieger, Oct 15 2019 *)

Extensions

More terms from R. J. Mathar and Emeric Deutsch, May 11 2008