A139589 Fibonacci numbers with Fibonacci number of divisors.
1, 1, 2, 3, 5, 13, 89, 233, 610, 987, 1597, 10946, 28657, 514229, 3524578, 9227465, 24157817, 39088169, 63245986, 433494437, 1836311903, 2971215073, 7778742049, 20365011074, 591286729879, 4052739537881, 17167680177565, 44945570212853
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..104
Programs
-
Maple
A000045 := proc(n) option remember ; coeftayl( x/(1-x-x^2),x=0,n) ; end: isA000045 := proc(n) local a; for a from 0 do if A000045(a) > n then RETURN(false) ; elif A000045(a)=n then RETURN(true) ; fi ; od: end: A000005 := proc(n) numtheory[tau](n) ; end: isA139589 := proc(n) RETURN(isA000045(n) and isA000045(A000005(n))) ; end: for i from 1 to 130 do a000045 := A000045(i) ; if isA139589(a000045) then printf("%d,",a000045) ; fi ; od: # R. J. Mathar, May 11 2008 with(combinat): with(numtheory): F:={seq(fibonacci(k),k=1..100)}: a:=proc(n) if member(tau(fibonacci(n)),F)=true then fibonacci(n) else end if end proc: seq(a(n),n=1..70); # Emeric Deutsch, May 12 2008
-
Mathematica
With[{s = Array[Fibonacci, 80]}, Select[s, ! FreeQ[s, DivisorSigma[0, #]] &]] (* Michael De Vlieger, Oct 15 2019 *)
Extensions
More terms from R. J. Mathar and Emeric Deutsch, May 11 2008
Comments