This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139646 #20 Sep 08 2022 08:45:33 %S A139646 131,139,179,211,251,419,491,521,569,571,601,641,659,809,859,881,971, %T A139646 1049,1091,1171,1249,1291,1361,1459,1481,1499,1531,1609,1699,1811, %U A139646 1889,1979,2011,2081,2089,2129,2131,2161,2339,2441,2521,2531,2539 %N A139646 Primes of the form x^2 + 130*y^2. %C A139646 Discriminant=-520. See A139643 for more information. %C A139646 The primes are congruent to {1, 9, 49, 51, 81, 121, 129, 131, 139, 179, 209, 211, 251, 259, 289, 321, 329, 339, 361, 419, 441, 451, 459, 491} (mod 520). %H A139646 Vincenzo Librandi and Ray Chandler, <a href="/A139646/b139646.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Vincenzo Librandi). %H A139646 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %t A139646 QuadPrimes2[1, 0, 130, 10000] (* see A106856 *) %o A139646 (Magma) [ p: p in PrimesUpTo(3000) | p mod 520 in {1, 9, 49, 51, 81, 121, 129, 131, 139, 179, 209, 211, 251, 259, 289, 321, 329, 339, 361, 419, 441, 451, 459, 491}]; // _Vincenzo Librandi_, Jul 28 2012 %o A139646 (Magma) k:=130; [p: p in PrimesUpTo(3000) | NormEquation(k, p) eq true]; // _Bruno Berselli_, Jun 01 2016 %K A139646 nonn,easy %O A139646 1,1 %A A139646 _T. D. Noe_, Apr 29 2008