This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139647 #20 Sep 08 2022 08:45:33 %S A139647 137,149,197,233,277,389,457,541,557,613,617,653,701,709,757,809,821, %T A139647 1033,1061,1201,1213,1289,1297,1373,1429,1453,1493,1597,1621,1733, %U A139647 1873,1901,2053,2069,2129,2137,2153,2213,2221,2297,2381,2417,2437 %N A139647 Primes of the form x^2 + 133*y^2. %C A139647 Discriminant=-532. See A139643 for more information. %C A139647 The primes are congruent to {1, 9, 25, 81, 85, 93, 121, 137, 149, 169, 177, 197, 225, 233, 253, 277, 289, 305, 309, 365, 389, 429, 457, 473, 501, 505, 529} (mod 532). %H A139647 Vincenzo Librandi and Ray Chandler, <a href="/A139647/b139647.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Vincenzo Librandi). %H A139647 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %t A139647 QuadPrimes2[1, 0, 133, 10000] (* see A106856 *) %o A139647 (Magma) [ p: p in PrimesUpTo(3000) | p mod 532 in {1, 9, 25, 81, 85, 93, 121, 137, 149, 169, 177, 197, 225, 233, 253, 277, 289, 305, 309, 365, 389, 429, 457, 473, 501, 505, 529}]; // _Vincenzo Librandi_, Jul 28 2012 %o A139647 (Magma) k:=133; [p: p in PrimesUpTo(3000) | NormEquation(k, p) eq true]; // _Bruno Berselli_, Jun 01 2016 %K A139647 nonn,easy %O A139647 1,1 %A A139647 _T. D. Noe_, Apr 29 2008