cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139652 Primes of the form x^2 + 232*y^2.

This page as a plain text file.
%I A139652 #20 Sep 08 2022 08:45:33
%S A139652 233,241,257,281,313,353,401,457,521,593,673,761,857,929,937,953,977,
%T A139652 1009,1049,1097,1153,1193,1217,1289,1321,1553,1601,1657,1753,1889,
%U A139652 1913,2017,2081,2089,2113,2137,2153,2297,2377,2441,2609,2617,2633
%N A139652 Primes of the form x^2 + 232*y^2.
%C A139652 Discriminant=-928. See A139643 for more information.
%C A139652 The primes are congruent to {1, 9, 25, 33, 49, 57, 65, 81, 121, 129, 161, 169, 209, 225} (mod 232).
%H A139652 Vincenzo Librandi and Ray Chandler, <a href="/A139652/b139652.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Vincenzo Librandi).
%H A139652 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%t A139652 QuadPrimes2[1, 0, 232, 10000] (* see A106856 *)
%o A139652 (Magma) [ p: p in PrimesUpTo(3000) | p mod 232 in {1, 9, 25, 33, 49, 57, 65, 81, 121, 129, 161, 169, 209, 225}]; // _Vincenzo Librandi_, Jul 28 2012
%o A139652 (Magma) k:=232; [p: p in PrimesUpTo(3000) | NormEquation(k, p) eq true]; // _Bruno Berselli_, Jun 01 2016
%K A139652 nonn,easy
%O A139652 1,1
%A A139652 _T. D. Noe_, Apr 29 2008