This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139663 #20 Sep 08 2022 08:45:33 %S A139663 521,569,601,641,809,881,1049,1249,1361,1481,1609,1889,2081,2089,2129, %T A139663 2161,2441,2521,2609,2729,3041,3121,3169,3329,3449,3761,3769,3929, %U A139663 4001,4241,4289,4481,4729,4801,4889,4969,5009,5209,5281,5521,5641 %N A139663 Primes of the form x^2 + 520*y^2. %C A139663 Discriminant = -2080. See A139643 for more information. %C A139663 The primes are congruent to {1, 9, 49, 81, 121, 129, 209, 289, 321, 329, 361, 441} (mod 520). %H A139663 Vincenzo Librandi and Ray Chandler, <a href="/A139663/b139663.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Vincenzo Librandi). %H A139663 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %t A139663 QuadPrimes2[1, 0, 520, 10000] (* see A106856 *) %o A139663 (Magma) [ p: p in PrimesUpTo(7000) | p mod 520 in {1, 9, 49, 81, 121, 129, 209, 289, 321, 329, 361, 441}]; // _Vincenzo Librandi_, Jul 29 2012 %o A139663 (Magma) k:=520; [p: p in PrimesUpTo(6000) | NormEquation(k, p) eq true]; // _Bruno Berselli_, Jun 01 2016 %K A139663 nonn,easy %O A139663 1,1 %A A139663 _T. D. Noe_, Apr 29 2008